Acusera 24Ā·7 Software Updates v3.3
Acusera 24Ā·7 Software Updates v3.3
Randox Quality Control is thrilled to announce the release of our latest software update for Acusera 24·7, which includes a collection of new features to enhance your user experience and create a more effective quality management system for your laboratory. This update shall take place on Tuesday 20th June 2023. Below, you’ll find details of the latest software updates and how these changes can help you improve your daily QC activities.
Events
- Users can now add an event at the assay, instrument or QC levels to allow more accurate monitoring of control events. In addition, this feature adds the capability to record reagent lot changes.
- Users now have the ability to temporarily hide all events from the interactive charts, allowing for a clearer view of QC performance over a selected timeframe.
Uncertainty of Measurement
- User can now add the uncertainty of the calibrator value to the uncertainty of measurement report to provide a more accurate assessment of uncertainty.
- Users now have the ability to hide the intraprecision data from the uncertainty of measurement report if no data has been entered for this field.
Charts
- A selection of new interactive charts have been added to this software. These charts focus on the individual results per analyte that each instrument generates over a specified time period.
Individual results
This graph displays a spread of the individual results for a single machine, per analyte generated over a specified time.
Weekly Count
This Bar Chart shows the weekly count of quality control results for a specific instrument, assay and lot.
Instrument Comparison
Users can now view a line graph, which plots the weekly mean of results from multiple instruments using the same assay and QC lot, allowing a comprehensive overview of your QC data.
If you’d like to learn more about these updates, we encourage you to watch our new Acusera 24·7 video guides: Acusera 24.7 Video Guides
This software update will be live from Tuesday 20th June 2023. To make the upgrade process as smooth as possible, we encourage Acusera 24·7 users to clear their browser cache, visit the Acusera 24·7 site, and you will be ready to avail of these new features!
If you would like an additional information on these updates, or anything else relating to Acusera 24·7, don’t hesitate to reach out the marketing@randox.com. Additionally, feel free to visit our QC resource hub where you will find all of our brochures, support tools and a collection of educational material, to aid you in maintaining the highest possible levels of quality.
Enhancing Laboratory Quality Control with Multi-Rule QC: A Comprehensive Guide
Introduction
We are thrilled to announce the release of our latest educational guide, “Understanding Multi-rule QC,” which delves into the world of laboratory quality control. Designed for laboratory professionals, this comprehensive guide aims to empower you with knowledge and strategies to ensure accurate results and uphold patient safety.
Understanding the Significance of Multi-Rule QC
Laboratory quality control is paramount in maintaining the integrity of test results. The guide begins by exploring the various causes of deviations in laboratory testing processes. From instrument malfunctions to environmental factors, we shed light on potential sources of error that can impact result accuracy.
Next, we dive into the core of the guide: Multi-rule QC. This powerful framework encompasses a series of rules that serve as a robust screening tool for identifying outliers, shifts, and trends in data. Through an in-depth exploration of rules such as 1:2s, 1:3s, 2:2s, R4s, 3:1s, 4:1s, 10x, and 7T, we unveil their underlying principles and their significance in maintaining quality control within laboratory settings.
Applying the Multi-Rule QC Approach
The guide equips laboratory professionals with practical insights on applying the Multi-rule QC approach. By examining consecutive data points, analysing trends, and detecting systematic shifts, you gain the ability to proactively address issues before they compromise result accuracy. We highlight the importance of avoiding overreliance on individual rules for result rejection, emphasizing the need to consider additional factors such as clinical relevance and method performance.
Troubleshooting Out-of-Control Events
No laboratory is immune to out-of-control events. That’s why our guide goes beyond rule implementation and delves into effective troubleshooting strategies. We provide guidance on identifying root causes, implementing corrective actions, and re-establishing control in your laboratory environment. By embracing a culture of continuous improvement, you can minimize the impact of deviations and optimize laboratory performance.
Acusera 24.7
Acusera 24.7 is a cloud-based inter-laboratory data management and peer-group reporting software designed to assist in the management of daily QC activities and aid continuous improvement in the laboratory. It includes multi-rule capabilities that can be utilized to monitor your QC data and index it as accepted, rejected, or trigger an alert, depending on the pre-defined multi-rules against which you want to check your data. These features enable the identification of nonconformities and reduce the need for laborious manual statistical analysis while enhancing the accuracy and precision of the laboratory.
Conclusion
In an era where accuracy and patient safety are paramount, the “Multi-rule QC” guide serves as an invaluable resource for laboratory professionals. By mastering the principles and applications of Multi-rule QC, you can enhance the quality control processes within your laboratory, mitigating risks and delivering reliable test results.
To explore the full potential of Multi-rule QC and embark on a journey of laboratory excellence, we invite you to download the guide today. Stay ahead of the curve and ensure the highest standards of quality and patient care in your laboratory!
You can download the Understanding Multi-rule QC Educational Guide below:
If you’d like to find out more about what we can do to help your laboratory or view our range of Internal Quality Controls, don’t hesitate to contact us at marketing@randox.com or feel free to browse the range on our website https://www.randox.com/laboratory-quality-control-acusera/.
Randox Health ā helping people reach the peak of their fitness.
Sam Cairns has completed what seemed to be the impossible – overcoming physical and mental hurdles to stand on top of the world. Cairns, from Aviemore, which is situated within the Cairngorms National Park in the Highlands of Scotland, successfully summited Mount Everest with help from County Antrim based, Leading Diagnostics company, Randox Health.
Ex Team-GB biathlete, Cairns is also the founder of Fitnessat58° and the cofounder of the Lunchbox boys. To Cairns climbing Mount Everest represented the pinnacle of all his aspirations, a true test of his physical capabilities.
He successfully reached the summit on Thursday, May 18th, at 4:45 am.
He also faced elemental dangers on his journey – facing multiple avalanches along the treacherous route. Undeterred by the different physical and mental obstacle he faced along the way Cairns pressed on to complete his self-assigned challenge, defying all the odds stacked against him to accomplish the end goal of reaching the top.
In preparation for this challenge Cairns’ training regimen encompassed 3-hour conditioning sessions, 50km ultra runs, and multiple ascents of Ben Nevis within a remarkable time frame.
Cairns worked closely with Randox Health throughout his training, utilizing the use of Randox’s health kits and Everyathlete health program to optimize his training and nutrition through data-driven insights.
“I’ve worked closely with Randox Health, whose team played a huge role in this process.
“Using their health kits, I gained key insights to ensure my health was where it needed to be, allowing me to optimize my training and nutrition for maximum performance with the Everyathlete health program.
“It has over 80 data points linked to nutrition, muscle, joint, hormonal health, and body composition; I used repeat testing to monitor changes in my health data. Randox Health also generously made a financial donation towards the expedition.”
The Everyathlete health program, which aided Cairns in his training helps optimize training, as noted, and nutrition for maximum performance. Over 80 data points linked to nutrition, muscle, joint, hormonal health, and body composition measured are included to help athletes keep on track, stay motivated and monitor your health data.
For Male Athletes, there is an option to include PSA is available during booking. The Everyathlete programme is perfect for anyone who wants to be proactive about their health, establish their health baseline prior to training and track their health data throughout training.
It not only helps people reach the peak of the world but also the peak of their fitness.
Biomedical Science Day 2023
This 8th June, Randox is celebrating Biomedical Science Day and our vital role in pro-active healthcare through our Randox Health Clinics.
Biomedical Science Day celebrates the vital role biomedical scientists play in patient care through the diagnosis of infections and diseases. It is a national event organized by the Institute of Biomedical Science (IBMS), the professional body for biomedical scientists and laboratory support staff. The awareness day aims to inform the public and empower patients by telling them about practices in biomedical science and celebrating a profession that is #AtTheHeartOfHealthcare.
Biomedical science is practiced in healthcare laboratories to identify, research, monitor and treat diseases. As one of the broadest areas of modern science, it focuses on the complexity of the human body and underpins much of modern medicine.
Here at Randox we continuously celebrate all our laboratory staff on a global scale – our team consists of over 650 research scientists and engineers who work in four jurisdictions across three continents!
For over forty years, Randox laboratory staff have been contributing to our work in preventative healthcare and research into diagnostics.
Randox has many departments which all work collectively to produce results. Our laboratory and R&D scientists are continuously researching new biomarker discovery. With a driven commitment to improving health worldwide, Randox reinvest up to 25% of turnover into developing disruptive innovations in diagnostics and healthcare – providing earlier diagnosis, prognosis, and improved patient risk to reduce current invasive diagnostic methods.
Differentiating Type 1 and Type 2 Diabetes Mellitus
An estimated 422 million people across the world are living with diabetes1. Diabetes Mellitus (DM) encompasses a collection of chronic diseases characterised by absent or ineffective insulin activity. Insulin is a hormone produced by the pancreas responsible for a host of essential physiological processes related to glucose metabolism and protein synthesis.
There are two main forms of DM, named type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) which result from different mechanisms and more importantly, require different therapeutic approaches. It is estimated that up to 40% of those diagnosed with T1DM after the age of 30 may have been misdiagnosed with T2DM2. This misdiagnosis of T1DM as T2DM will result in poor glycaemic control, frequent healthcare contact for increased treatment, inappropriate insulin regimes and risk of life-threatening ketoacidosis.
In this article, we’ll look at the similarities and differences between these two forms of DM and investigate the mechanisms by which these common diseases arise.
Insulin Pathway
The normal insulin signalling pathway, shown below, is responsible for the processing and transport of glucose in the body. Briefly, insulin binds to the insulin receptor and activates PI3K and, subsequently, serine-threonine kinase (AKT). AKT is responsible for the phosphorylation of glycogen synthase kinase 3-β (GSK-3β), inhibiting its activity and promoting the synthesis of glycogen leading to a reduction in blood glucose concentration. Failing to inhibit GSK-3β will result in hyperglycaemia and eventually T2DM.
Type 1 Diabetes Mellitus
T1DM is most commonly diagnosed at a young age. This form of DM is the result of an autoimmune reaction to proteins produced by the pancreas which results in a lack of insulin secretion. The antibodies responsible for this autoimmunity are detailed in the table below:
A key factor in T1DM pathogenesis is changes in the T cell-mediated immunoregulation, notably in the CD4+ T cell compartment. The activation of the CD4+ T cells is responsible for inflammation of the pancreatic cells which produce insulin, known as insulitis.
Changes in the expression of IL-1 and TNFα cause structural alterations in pancreatic β-cells which result in the suppression of insulin secretion. This insulin deficiency has subsequent effects on glucose metabolism and protein synthesis.
T1DM causes an increase in hepatic glucose levels when gluconeogenesis converts glycogen to glucose. A lack of insulin means the subsequent hepatic uptake of this glucose does not occur.
Insulin is also responsible for regulating the synthesis of many proteins. This regulation can be positive or negative but ultimately results in an increase in protein synthesis and a decrease in protein degradation. Therefore, when hypoinsulinemia occurs, decreasing insulin concentration in the blood, protein catabolism is increased leading to increased plasma amino acid concentration.
Type 2 Diabetes Mellitus
The pathogenesis of T2DM, detailed in the diagram below, is multi-factorial. It arises from a combination of genetic and environmental factors which affect insulin activity.
In T2DM, the regulatory mechanisms related to glucose metabolism fail resulting in impaired insulin activity or insulin resistance.
Mutations in genes involved in insulin production can cause the secretion of abnormal insulin molecules, known as insulinopathies. Insulinopathies are unable to effectively metabolise glucose which results in the accumulation of this sugar. Additionally, obesity is considered to be a causal factor in the development of T2DM.
Unlike those with T1DM, patients with T2DM can maintain circulating insulin levels. T2DM is characterised by glucose intolerance, impaired glucose tolerance, diabetes with minimal fasting hyperglycaemia, and DM in association with overt fasting hyperglycaemia.
Individuals with impaired glucose tolerance have hyperglycaemia despite preserving high levels of plasma insulin. These levels of insulin decline from impaired glucose tolerance to DM. It is insulin resistance is considered the primary cause of T2DM.
Misdiagnosis
The misdiagnosis of these types of DM is common, due to similar symptoms. The simplest differentiating factor is when these symptoms manifest. T1DM is an autoimmune disorder and therefore, symptoms generally occur much earlier in one’s life. T2DM is typically diagnosed in later life. The common symptoms of DM are:
- Frequent urination, particularly throughout the night.
- Polydipsia (excessive thirst)
- Polyphagia (excessive hunger)
- Lethargy
- Sudden weight loss
- Genital itching or thrush
- Blurred vision
The misdiagnosis of T2DM as T1DM results in unnecessary initial insulin therapy, higher drug and monitoring costs and often, an increase in the number and severity of symptoms. Conversely, the incorrect classification of T1DM as T2DM causes poor glycaemic control, frequent visits to healthcare services for treatment, inappropriate insulin regimes and risk of Diabetic Ketoacidosis.
Diabetic Ketoacidosis (DKA)
DKA is a potentially life-threatening condition caused by an accumulation of ketones in the body due to insulin deficiency, which is common in patients with T1DM, however, an increasing number of cases have been reported in patients with T2DM. Diagnosis of DKA consists of a high anion gap metabolic acidosis, ketone bodies present in serum and/or urine, and high blood glucose concentration. The symptoms of DKA include:
- Polyuria (excessive urination) and polydipsia (thirst)
- Weight loss
- Fatigue
- Dyspnoea (shortness of breath)
- Vomiting
- Fever
- Abdominal pain
- Polyphagia (excess hunger)
- Fruity-smelling breath caused by acetone accumulation.
Randox Type 1 Diabetes Mellitus Genetic Risk Array
T1DM is largely genetic and is associated with over 50 distinct genetic signatures, many of which are single nucleotide polymorphisms (SNPs). This is of great advantage in testing as unlike traditional biomarkers, genetic markers don’t change throughout one’s life, providing a robust method for diagnosis and risk stratification. Genetic data gathered can then be used to develop a genetic risk score, allowing an individual’s probability of developing the disease to be quantified.
Using this principle, together with our patented Biochip array technology, Randox have developed a T1DM GRS array. Using a combination of 10 SNPs from the HLA region and the non-HLA region commonly detected in T1DM patients, and a selection of other risk factors and biomarkers, this molecular array can accurately discriminate between T1DM and T2DM.
Conclusions
Misdiagnosis of DM can have life-threatening consequences. Both types of DM are very common and distinguishing between T1DM and T2DM is crucial.
T1DM is an autoimmune disorder with a lack of insulin secretion, while T2DM is primarily due to insulin resistance. Understanding their mechanisms is vital for accurate diagnosis and treatment. Genetic testing, like the Randox Type 1 Diabetes Mellitus Genetic Risk Array, can differentiate between T1DM and T2DM by analysing genetic markers and providing personalized treatment insights.
Accurate diabetes diagnosis is crucial for proper management, prevention of complications, and improving the lives of millions. Together, we can make a difference in the lives of those affected by diabetes!
If you’d like to learn more about the different types of DM, including the pathogenesis, pathophysiology, associated risk factors, and more, please take a look at our educational guide Diabetes Solutions.
Alternatively, feel free to reach out to our marketing team at marketing@randox.com who will be happy to help you with any queries you may have.
References
- World Health Organization. Diabetes. World Health Organisation. Published April 5, 2023. Accessed April 25, 2023. https://www.who.int/news-room/fact-sheets/detail/diabetes
- The Misdiagnosis of type 1 and type 2 diabetes in adults. The Lancet Regional Health. 2023;29:100661-100661. doi:https://doi.org/10.1016/j.lanepe.2023.100661
World Haemochromatosis Awareness Week
World Haemochromatosis Awareness Week, took place this year between theĀ 1st ā 7th June.
Genetic Haemochromatosis, or the āCeltic Curseā is the UK and Ireland’s most inherited condition.
Randox can help you find out if you are at risk with a blood test from one of our Randox Health clinics, including our newly opened Clinic in Sandyford, Dublin.
The tests are available from Ā£69 and the results of which will be returned within 7-14 days. Randoxās easy-to-interpret Genetic Haemochromatosis risk report will provide a breakdown of your results and what they mean.
An optional remote appointment with a Randox genetic counsellor can also be made when booking. Early diagnosis enables early treatment to prevent ill health because of iron overload.
Haemochromatosis is a condition which causes people to absorb too much iron from their diets but many people are not aware of it despite over 9 million people in the UK estimated to have the genetic predisposition to haemochromatosis (or Iron overload disorder.)
Despite its commonplace, this condition is rarely diagnosed with only one in every five thousand receiving a diagnosis.
Symptoms can Include:Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā
ā¢Ā Fatigue
ā¢ Palpitations
ā¢ Joint Pain
ā¢ Abdominal Pain
ā¢ Skin PigmentationĀ Ā
Haemochromatosis is an Autosomal Recessive disorder.
These type of disorders usually mean that men and women are equally likely to be affected, with Haemochromatosis however, men are more likely to be at risk than women.Ā
Women may be protected from iron overload due to physiological blood loss (menstruation and pregnancy) which can reduce theĀ iron overload.
Men living with haemochromatosis are ten-times more likely to be at risk of liver cancer and have twice the risk of developing dementia, if left undiagnosed or untreated.
Follow the link below to book: Haemochromatosis Test
Sexually Transmitted Infections ā Rapid Testing at the Point of Care
Urgency, Challenges and Advances in STI Testing
Sexually transmitted infections (STIs) are a major global health issue, with over 30 pathogens causing an estimated one million infections daily, a number that is rising. Surveillance programs in countries like the United States and Canada have reported an increase in STIs such as syphilis, gonorrhoea, and chlamydia. STIs can have serious consequences for sexual health, including infertility and chronic pelvic pain, particularly affecting women. The World Health Organization (WHO) has recognised the urgency of addressing this problem and has recommended measures to end the STI healthcare issue by 2030. Integrated testing, including multiplex and point-of-care testing, is considered essential. However, implementation of these recommendations at regional and national levels is lacking. Rapid point-of-care PCR tests that can detect multiple pathogens simultaneously would greatly improve STI diagnosis and containment. Currently, Randox, in collaboration with Bosch offers two STI test panels on the Vivalytic POC system: Vivalytic STI and Vivalytic MG, MH, UP/UU panels, capable of detecting multiple pathogens in a single test run, with results available within hours.
The Global Burden
- The WHO estimates 374 million new infections of chlamydia, gonorrhoea, syphilis, and trichomoniasis annually.
- Chlamydia is the most frequently reported STI in Europe, followed by gonorrhoea and syphilis.
- Countries with comprehensive STI screening programs, like Denmark, have higher prevalence rates than the European average.
- The UK has a comprehensive screening program for chlamydia targeting 15-24-year-olds, with cases accounting for 60% of total cases in the European Region.
- The actual infection rate in countries without systematic screening is likely higher than official figures suggest.
- Reported cases of gonorrhoea and syphilis in the European Region have increased, particularly among certain age groups and higher numbers in men than women.
Gaps in Current STI Testing Strategies
The European Centre for Disease Prevention (ECDC) acknowledges the growing concern of STIs in Europe and emphasises the importance of testing in their recent report. While various European countries have screening programs for chlamydia, testing options for other STI pathogens are usually limited. The lack of accessible testing, combined with the prevalence of asymptomatic infections, increases the risk of STI transmission and hampers containment efforts. Prevention campaigns and low-threshold testing opportunities are crucial to address the spread of STIs. The UK’s chlamydia screening program, implemented in 2008, demonstrated the benefits of community-based testing services and led to a significant increase in diagnosed cases, reducing the number of unreported cases.
Infections and Co-Infections
- Co-infections, where multiple sexually transmitted pathogens are present simultaneously, are common but often go undetected due to limited testing.
- Symptoms of co-infections can be difficult to differentiate since different pathogens can cause similar or overlapping symptoms.
- However, most STIs, even in high-risk groups, are caused by a single sexually transmitted pathogen.
- In cases where co-infections need to be detected, a rapid and comprehensive differential diagnosis of sexually transmitted pathogens is crucial for initiating appropriate therapy promptly.
The Importance of Rapid Results at the Point of Care
- Rapid detection and treatment of STIs are crucial to prevent further spread.
- Traditional STI diagnostics in specialized laboratories can result in delays of several days or up to 1-2 weeks until test results are available to the physician.
- Delays occur due to transportation of samples, laboratory workflow, result transfer, and scheduling additional appointments.
- The delay in treatment initiation can lead to decreased patient compliance and missed appointments.
The Vivalytic STI test provides results directly at the point of care (POC) in less than two and a half hours. It eliminates the need for sample transportation to a central laboratory. In addition, patients can receive their test results on the same day of the visit, allowing for immediate initiation of appropriate treatment.
In a Nutshell
Sexually transmitted infections (STIs) spread due to various factors. Many STIs do not show symptoms, resulting in numerous unreported and untreated cases that can have fatal consequences depending on the specific pathogen. Increasing awareness and implementing a decentralised low-threshold testing strategy can significantly reduce infections, particularly among high-risk groups. Speed and comprehensive testing of relevant pathogens are crucial for targeted therapy and containing STIs. Rapid PCR tests used at the point of care (POC) are emerging as important technologies due to their advantages. Patients receive same-day results and immediate treatment, providing clarity in just one visit. Clinicians can provide up-to-date diagnoses and treatments, even in decentralised or hospital settings, benefiting high-risk patients with limited access to healthcare.
Vivalytic
The Bosch Vivalytic, is an advanced and automated platform for molecular diagnostics that utilises PCR to detect pathogens. It offers applications for various medical disciplines and requires only a few steps from sample collection to obtaining results. The patient sample is processed automatically within the Vivalytic analyser, and the test result is displayed on its integrated screen. The time it takes to get results depends on the specific Vivalytic application. For the STI Panel, which simultaneously detects 10 common sexually transmitted pathogens, the time to result is 2.5 hours. On the other hand, the Vivalytic MG, MH, UP/UU panel, used to detect mycoplasmas and/or ureaplasmas, provides results in approximately one hour.
By conducting fully automated analyses at the point of care, Vivalytic saves valuable time for hospitals, labs, genitourinary clinics and doctor’s offices during their routine processes.
STI Panel | MG, MH, UP, UU Panel |
---|---|
Chlamydia trachomatis | Mycoplasma genitalium |
Neisseria gonorrhoeae | Mycoplasma hominis |
Trichomonas vaginalis | Ureaplasma parvum/Ureaplasma |
Mycoplasma genitalium | |
Treponema pallidum | |
Mycoplasma hominis | |
Ureaplasma urealyticum | |
Haemophilus ducreyi | |
Herpes simplex virus I | |
Herpes simplex virus II |
At a Glance
- The Vivalytic system allows fully automated sample analysis with minimal manual steps.
- It eliminates the need for expensive and complex laboratory equipment.
- Vivalytic supports both single and multiplex tests.
- The Vivalytic does not require peripheral equipment such as a laptop, keyboard, barcode scanner, or charging station.
- The cartridge used in the system ensures hygienic and safe operation as a closed system.
- Cartridges can be stored and used at room temperature.
- Vivasuite, a cloud-based solution, facilitates convenient device management.
- The Vivalytic can be seamlessly integrated into existing IT structures using HL7, Ethernet, USB, or WLAN.
For more information please contact us at: marketing@randox.com
Dementia Action Week 2023
Dementia Action Week is a national event that sees people across the UK taking action to improve the lives of people affected by dementia, as organized by the Alzheimer’s Society.
Dementia is an umbrella term for a range of progressive conditions that affect the brain.
Each type of dementia stops a person’s brain cells (neurons) working properly in specific area and affecting their ability to remember, think and speak cohesively.
It is estimated that one in three people born this year nationwide will develop some form of Dementia at some point in their lives.
A cure for Dementia has unfortunately not yet been developed. However, in the pursuit of a cure, there is things that have the potential to vastly improve the quality of life for those living with these conditions.
Here at Randox, there is a focus on preventative healthcare. Which is why it made sense when Randox partnered with Race Against Dementia for their nominated charity of 2023.
Race Against Dementia is a global charity founded by three-times Formula 1 World Champion Sir Jackie Stewart, OBE – with the aim of funding much needed pioneering research into the prevention and cure of Dementia.
Also, in our work of towards diagnosis and treatments for those living with Dementia conditions, Randox Laboratories have launched a CE marked Alzheimer’s Disease Risk Array.
Alzheimer’s is one of the most common forms of Dementia and is an irreversible, progressive brain disorder, in which parts of the brain are damaged over time.
Randox Laboratories’ Alzheimer’s Disease Risk Array can be used for the direct determination of ApoE4 status from plasma, eliminating the need for genetic testing, assisting in clinical research and personalized medicine strategies.
At Randox, we believe the importance of measuring ApoE4 protein expression in plasma is the way forward to screen those individuals at increased risk of Alzheimer Disease, as new beta amyloid-targeting therapies for this condition are being expected.
For further information about the Randox Alzheimer’s Array please email info@randoxbiosciences.com
Alzheimer’s Disease Array | Disease Markers | Randox Laboratories
Introducing Comprehensive Educational Guides on Updated CLIA Proficiency Testing Regulations
We are thrilled to present two educational guides that delve into the newly updated minimum performance specifications for Proficiency Testing by CLIA (Clinical Laboratory Improvement Amendments). These regulations, set to be implemented by 2024, aim to enhance the accuracy and reliability of test results in clinical laboratories. Here, we introduce these invaluable resources designed to assist laboratories in navigating the evolving landscape of proficiency testing.
1. Proficiency Testing Regulations Related to Analytes and Acceptable Performance – A Final Rule (Microbiology):
Our first guide focuses on the specific regulations and requirements pertaining to microbiology proficiency testing. With a comprehensive exploration of these guidelines, this guide is a useful resource for microbiology labs striving to ensure precision and integrity in their testing procedures. From the required categories of testing to maintaining optimal testing conditions, the guide details the updates that promote adherence to the highest standards of quality and safety.
2. Proficiency Testing Regulations Related to Analytes and Acceptable Performance – A Final Rule (Non-Microbiology):
For non-microbiology laboratories, our second guide delves into the updated proficiency testing regulations concerning various analytes. From chemistry to haematology, molecular diagnostics to immunology, this guide offers a comprehensive overview of the new requirements and minimum performance specifications. By embracing these regulations, medical laboratories can uphold the utmost accuracy and reliability in their test results, ensuring optimal patient care and clinical decision-making.
Elevating Laboratory Practices:
These educational guides are indispensable tools that empower laboratories to navigate the changing landscape of proficiency testing regulations. By staying informed and adopting the updated minimum performance specifications, laboratories can maintain compliance, demonstrate excellence, and ultimately deliver the highest quality of care to their patients.
Accessing the Guides:
We invite you to access these comprehensive educational guides by following the link provided below. They offer a wealth of knowledge and practical insights, serving as essential references for laboratory professionals, quality managers, and anyone involved in clinical diagnostics.
With the implementation of updated CLIA proficiency testing regulations on the horizon, these educational guides come at a crucial time. By embracing the knowledge and guidance they provide, laboratories can navigate the changing landscape with confidence and ensure their adherence to the highest standards of proficiency testing. Together, let’s strive for excellence, precision, and patient-centric care in clinical laboratory practices.
#CLIARegulations #ProficiencyTesting #ClinicalLaboratories #QualityAssurance #PatientCare
Microbiology
Non-Microbiology
Internal Quality Control and ISO 15189
As a major contributor to the IVD industry, like many of you, the trials and tribulations of quality control are an everyday consideration. It is for this reason we strive to make the process of IQC as straightforward as possible. We recognise how busy life in the laboratory can get and believe it is our duty to simplify your QC process as much as possible.
The Acusera range has been designed with this in mind. Our true third-party control range boasts unrivalled levels of consolidation, supplied at clinically relevant concentrations in a suitable, commutable matrix. When used in combination with Acusera 24.7, our interlaboratory management software, the Acusera range will help to reduce analytical errors and maximise precision in your laboratory.
With the recent updates to ISO 15189:2022, we understand that there will be added pressure on many laboratories who are trying to maintain their accreditation. To assist you with your gap analysis and transition to these updated standards, we have produced this accreditation guide, detailing all of the key points relating to this new version of the highly sought after accreditation.