Randox Testing Services | How can a policy form the basis of workplace drug & alcohol testing?

Home - Blog Articles - Page 23

Randox Testing Services | How can a policy form the basis of workplace drug & alcohol testing?

If you work in a company with safety-critical roles it is more than likely that you have some sort of workplace drug and alcohol testing policy in place. Even companies without safety-critical roles are implementing these policies to further ensure the health, safety and wellbeing of their staff.

Employers hold the responsibility to ensure employees are fully aware of the company’s rules, regulations, testing and disciplinary procedures.

The policy itself holds vital importance, providing employees with the knowledge of the standards expected of them, whilst educating themselves with information provided in a written comprehensive manner.

The importance of implementing a policy

The most important element of a workplace drug and alcohol testing policy is SAFETY. Drug and alcohol use increases the probability of workplace accidents occurring. Studies have found that employees who have alcohol problems are 2.7 times more likely to have an accident whilst at work. The main issues associated with substance misuse relate to:

  • Absenteeism – it’s estimated that 17 million days of work are lost per year due to substance misuse.
  • Low productivity levels – employees may reduce output in different tasks and become de-motivated.
  • Inappropriate behaviour – some cases of substance abuse may lead to crime.
  • Aggressive behaviour towards others – resulting in loss of employment / convictions

It’s evident that many who suffer from drug & alcohol abuse are in employment. Studies show 25% of those in employment were registered drug addicts with 3.3% of all adults aged 16-59 classified as frequent users.

Significant issues such as these provide growing concerns for employers to implement a workplace drug and alcohol policy, to ensure the welfare of each member of staff is considered. Under the Health & Safety Act 1874, employers have a responsibility to ensure the safety of their employees is fully met in order to maintain standards.

The importance of a workplace policy for drugs and alcohol can benefit employers by:

  • Building relationships with employees by showing there is help and support available.
  • Policies can raise awareness of issues in the business and can encourage staff members to take action if needed.
  • It can reduce the number of sick employees, reduce staff turnover and increase productivity levels.

Speak with us directly

We understand that the importance of having a policy that suits the specific needs of your company. In order to fully achieve this, we offer a free policy review service, where we will review your company’s existing documentation to gain an understanding of how we can help going forward.

We are delighted to announce we will be attending the Safety & Health Expo 2018. The annual event, running from 19th – 21st June and held at the Excel London, is the UK’s largest health and safety event with over 13,500 national and international key industry professionals across construction, manufacturing, government and consulting.

By attending this prestigious event we hope to engage with a range of stakeholders to discuss how our drug & alcohol testing services can have a positive impact on your employees and business.

If you are attending this event and would like to speak with us, please stop by our stand M410 to speak with one of our experts.

Alternatively, if you would like to arrange a meeting with us prior to the event, please email us: testingservices@randox.com, and quote Safety & Health Expo 2018 at the beginning of your message.

For more information on workplace drug & alcohol testing, visit www.randoxtestingservices.com.

 


Lp(a): For the Accurate Detection of CVD Risk

Lp(a) is an independent risk factor for cardiovascular disease (CVD), even when classical risk factors such as hypertension, elevated cholesterol, and diabetes have been taken into consideration.  High levels of Lp(a) is a heredity condition, associated with complex mechanisms involving the proatherogenic and prothrombotic pathways (1).

 

Traditional CVD testing panel

According to the World Health Organisation (WHO), CVD is the leading cause of death globally, accounting for 31 percent of deaths, totalling 17.7 million deaths per year.  80 percent of all CVD deaths are attributed to heart attacks and strokes, equivalent to 1 in 4.  Identifying those who are at a high risk of developing CVD and ensuring that they are receiving the appropriate treatment can prevent premature deaths (2).

The lipid profile is frequently used to assess an individual’s risk of CVD developing later in life.  Routine tests to assess CVD risk include: triglycerides, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C).  LDL-C has been found to strongly correlate with CVD risk (3).  NICE recommend measuring total cholesterol, HDL cholesterol, non-HDL cholesterol and triglycerides as the full lipid profile and then review other risk factors, including: age, diet, smoking, QRISK, co-morbidities to view risk and the management of risk (4).  However, the current lipid panel needs to be adjusted to ensure that its utilisation is effective in meeting clinician and patient needs.

 

Lipoprotein(a)

Lipoprotein (a) or Lp(a) consists of two protein molecules, apolipoprotein (a) or apo(a) is covalently linked by a disulphide bond to the apolipoprotein B-100 or apoB-100 of a cholesterol-rich low-density lipoprotein or LDL like particle.  Lp(a) is synthesised in the liver and is detectable in the bloodstream (5).

The structure of Lp(a) resembles that of the proteins involved in the breakdown of blood clots, plasminogen and tissue plasminogen activator (TPA).  As a result, the biggest concern with Lp(a) is that it prohibits the ability of these proteins to break down blood clots by competing for the ‘binding to fibrin’, boosting the blood’s clotting ability within arteries, thus heightening the risk of heart attacks and strokes.  Consequently, high levels of Lp(a) is characterised by atherosclerosis including coronary heart disease, peripheral vascular disease, aortic stenosis, thrombosis and stroke (6).

The Journal of the American Medical Association reviewed 36 studies in 2009 which assessed ‘the role of Lp(a) and vascular disease’ in 126,634 individuals.  The study found that a 3.5-fold increase in Lp(a) levels was accompanied with a 13 percent higher risk of coronary heart events and a 10 percent higher risk of stroke (7).

Later, an Italian population study carried out on 826 individuals in 2014 found that elevated levels of Lp(a) is due to two different variations of the apo(a) gene which is determined by the kringle sequence differences at the apo(a) locus.  The study found that individuals with one variation had a 50 percent greater risk of CVD, while individuals with both variations had 2.5 times greater risk (7).

According to the Lipoprotein Foundation (2015), based on genetic factors, from birth, one in five or 20% of individuals have high Lp(a) levels greater than 50mg/dL, with most blissfully unaware they have it.  Overtime, high levels of Lp(a) gradually narrow the arteries, limiting blood supply to the brain, heart, kidneys and legs, increasing the risk of heart attacks and strokes (5).

 

Testing for high Lp(a) levels

The Lipoprotein (a) Foundation (2015) recommends that Lp(a) levels should be tested if:

  • There is a family history of cardiovascular disease including stroke, heart attack, circulation problems in the legs and/or narrowing of the aorta, at a young age
  • Stroke or heart attack if classical risk factors including high LDL-cholesterol, obesity, diabetes and smoking have been eliminated
  • High levels of LDL-cholesterol following treatment with statins or other LDL lowering medications(5)

When selecting a Lp(a) assay, the Internal Federation of Clinical Chemistry (IFCC) (2004) Working Group on Lp(a) recommends that laboratories use assays that do not suffer from apo(a) size-related bias to minimise the potential risk of misclassification of patients for coronary heart disease (8).

The Lp(a) Foundation reference Marcovina and Albers (2016) in their recommendations for the best Lp(a) test.  The study came to the following conclusions:

  • Robust assays based on the Denka method, reportable in nanomoles per litre (nmol/L) are traceable to WHO/IFCC reference material
  • Five-point calibrators with accuracy-based assigned target values will minimise the sensitivity of to the size of apo(a)
  • Upon request, manufacturers should provide the certificate of evaluation of the calibrator and reagent lots with the relative expiration dates (9)

 

Benefits of the Randox Lp(a) assay

The Randox Lp(a) assay is one of the only methodologies on the market that detects the non-variable part of the Lp(a) molecule and so suffers minimal size related bias providing more accurate and consistent results.  This methodology allows for the detection of Lp(a) in serum and plasma.  The Randox Lp(a) kit is standardized to the WHO/IFCC reference material, SRM 2B, and is the closest in terms of agreement to the ELISA reference method.

A five-point calibrator is provided with accuracy-based assigned target values which accurately reflects the heterogeneity of isoforms present in the general population.

Liquid ready-to-use reagents are more convenient as the reagent does not need to be reconstituted, reducing the risk of errors.

Applications are available for a wide range of biochemistry analysers which details instrument-specific settings for the convenient use of the Randox Lp(a) assay on a variety of systems.  Measuring units in nmol/L are available upon request.

 

References

  1. Li, Yonghong, et al. Genetic Variants in the Apolipoprotein(a) Gene and Coronary Heart Disease. Circulation: Genomic and Precision Medicine. [Online] October 2011. [Cited: April 24, 2018.] http://circgenetics.ahajournals.org/content/4/5/565.
  2. World Health Organisation. Cardiovascular Disease. [Online] 2017. [Cited: April 30, 2018.] http://www.who.int/cardiovascular_diseases/en/.
  3. Doc’s Opinion. Lipoprotein (a). [Online] 2013. [Cited: April 30, 2018.] https://www.docsopinion.com/health-and-nutrition/lipids/lipoprotein-a/.
  4. National Institutional for Health and Care Excellence. Cardiovascular disease: risk assessment and reduction, including lipid modification. [Online] July 2014. [Cited: April 30, 2018.] https://www.nice.org.uk/guidance/cg181/chapter/1-recommendations#lipid-modification-therapy-for-the-primary-and-secondary-prevention-of-cvd-2.
  5. Lipoprotein(a) Foundation. Understand Inherited Lipoprotein(a). [Online] 2015. [Cited: April 24, 2018.] http://www.lipoproteinafoundation.org/?page=UnderstandLpa.
  6. Heart UK. Lipoprotein (a). [Online] June 23, 2014. [Cited: April 24, 2018.] https://heartuk.org.uk/files/uploads/huk_fs_mfss_lipoprotein_02.pdf.
  7. Ashley, Robert. High lipoprotein(a) levels may indicate heart disease in some. The Brunswick News. [Online] March 05, 2018. [Cited: April 24, 2018.] https://thebrunswicknews.com/opinion/advice_columns/high-lipoprotein-a-levels-may-indicate-heart-disease-in-some/article_16ab1049-7a6f-5da0-8966-59e94ae31b6d.html.
  8. Dati, F; Tate, J R; Marcovina, S M; Steinmetz, A; International Federation of Clinical Chemistry and Laboratory Medicine; IFCC Working Group for Lipoprotein(a) Assay Standardization. First WHO/IFCC International Reference Reagent for Lipoprotein(a) for Immunoassay–Lp(a) SRM 2B. NCBI. [Online] 2004. [Cited: April 30, 2018.] https://www.ncbi.nlm.nih.gov/pubmed/15259385.
  9. Tsimikas, Sotirios. A Test in Context: Lipoprotein(a) – Diagnosis, Prognosis, Controversies, and Emergining Therapies. 6, s.l. : Elsevier, 2017, Vol. 69. 0735-1097.

If you are a cardiologist or a laboratory who are interested in running cardiology and lipid assays, Randox offer a wide range of high-quality, routine and niche assays including: adiponectin, H-FABP, sLDL, TxBCardio, HDL2/3-C, Homocysteine, Apo C-II, Apo C-III and Apo E.  These can be run on most automated biochemistry analysers.

Instrument Specific Applications (ISA’s) are available for a wide range of biochemistry analysers.

For more information, visit: https://www.randox.com/lipoprotein-a or email: reagents@randox.com  


Is Biomarker Multiplexing the future of kidney disease screening?

Chronic Kidney Disease (CKD) is both a cause and a consequence of cardiovascular diseases, and is an increasing burden on global health. As diabetes, obesity and hypertension incidences continue to rise and the world’s population steadily ages, CKD’s prevalence is already estimated to be between 11% and 13% globally for all five KDOQI stages, with a majority in Stage 3 (about 90% of all stages).

With early stages of CKD being asymptomatic and current diagnostic tools (proteinuria determined by albumin to creatinine ratio and decreased renal function estimated from GFR using the CKD-EPI equation) are insufficiently sensitive to detect most cases up to stage 3, it is likely that the true prevalence of CKD is still underestimated. Therefore the need to improve both early diagnostics and overall CKD outcome is all the more critical.

Accordingly, biomarker research has been intense in the field of renal disease for at least 10 years with a number of promising candidates emerging, some now well-known by specialists: Cystatin C, NGAL or KIM-1 for example.

However, further novel biomarkers, assessed in combination using a properly developed multiplex assays can allow superior insight into CKD than what their individual performance could achieve.  This also largely stems from selecting the markers that are indicative of complementary mechanisms that contribute to the development of CKD.

When assayed together from a single serum sample and after combinatorial analysis has been applied, these biomarkers can open new avenues in the management of CKD, such as proper diagnosis of the condition from Stage 1, clear differentiation between stages and monitoring of the progression pace of the disease. Early screening of patients at risk of CKD is now within reach and it is expected that its systematic use will have a profound impact on health system economics.

Another area of interest in renal research is Acute Kidney Injury (AKI) which may arise as a result of cardiac surgery and can subsequently lead to CKD. AKI detection is also of significant interest in the field of drug development, where early stage toxicity is still a large cause of new drug marketing withdrawal. Hence selecting and qualifying kidney tissue damage biomarkers, and assembling them into a multiplex panel is a key priority to those involved in early stage clinical trials.

An AKI panel has been worked out using the same principles as those used in the development of the CKD panel: high individual diagnostic value and multiple, independent cellular targets. This panel is now ready for final clinical qualification and will be one of the first of several organ-targeted safety panels aiming to become standard for drug induced toxicity screening.

It is key to the adoption of multiplex testing that proper validation guidelines be published and that careful, matrix-based validation data is made available to potential users. It is essential that multiplexed testing comes to the front line of testing in the field, so it can deliver to its full potential and start translating into public health improvement and cost savings. Technology is ready, let’s make a start!

Dr Claire Huguet

Randox Biosciences – Head of Biomarkers

 

For further information about kidney disease screening from Randox Biosciences, please contact randoxpr@randox.com

 

 

 


Neonatal health testing from Randox: keeping your baby healthy now and into the future

Most newborns enter the world healthy. But sometimes, infants develop conditions that require medical tests and treatment. Newborns are particularly at risk for some diseases, and in particular infections, because their immune systems aren’t developed enough to fight bacteria, viruses, and parasites.

At Randox we offer a number of accurate and reliable tests capable of detecting illnesses in newborn babies, enabling early medical intervention to allow for the best possible outcome for the baby.

Testing for Jaundice with Randox Bilirubin

In the routine care of newborns, a test for bilirubin is commonly conducted.

Bilirubin is formed by the breakdown of haemoglobin in the spleen, liver and bone marrow. It travels to the liver where it is secreted into the bile ducts as bile, and stored in the gallbladder where it is later released into the small intestines for digestion.

Increased levels of bilirubin within the body are associated with a condition called jaundice, which occurs in toxic or infectious diseases of the liver. The most common symptom of jaundice is a yellow pigmentation of the skin.

Elevated levels of bilirubin may also arise as a result of an obstruction in the bile duct or gall bladder, as a result of haemolysis (the destruction of red blood cells), or by the liver not actively treating the haemoglobin it is receiving.

Therefore the Randox Bilirubin test is essential in the screening, monitoring and diagnosis of hepatic (liver function) disorders and jaundice in newborn babies.

Neonatal jaundice, otherwise known as hyperbilirubinemia, is extremely common in babies, because nearly every newborn develops a somewhat elevated bilirubin level during the first week of life.

Side effects may include excess sleepiness or poor feeding, but in some more extreme cases babies may experience seizures, cerebral palsy, delayed intellectual development, or physical abnormalities.

Early and accurate detection is therefore extremely important – making bilirubin testing fundamental. To ensure the precision of the bilirubin tests conducted in paediatric testing, Randox also offers Acusera Bilirubin Elevated Quality Control.

Monitoring the destruction of red blood cells with Randox G-6-PDH

Glucose-6-Phosphate Dehydrogenase (G-6-PDH) is an enzyme located on the X-chromosome, and so is found in every bodily cell as soon as a baby is born.

G-6-PDH is involved in the normal processing of carbohydrates and plays a critical role in red blood cells, protecting them from damage and destruction. Depleted levels of G-6-PDH can therefore cause red blood cells to become particularly vulnerable to haemolysis. G-6-PDH deficiency, which causes rapid heart rate, shortness of breath, excess tiredness, and mild to severe jaundice in new-borns, affects more than 400 million people globally.

During a baby’s new-born screening, a test for the G-6-PDH enzyme will be conducted to check for this deficiency disorder. Early diagnosis is imperative, as untreated haemolysis can result in haemolytic anaemia.

Genetic Disease Screening with Randox Copper

Copper is an essential mineral in human nutrition, and is mainly found in the brain, liver, kidneys, heart and skeletal muscle.

It aids in some of the key bodily functions including the production of red blood cells, the maintenance of nerve cells and the immune system, and the formation of bone and connective tissue. A deficiency in this mineral can therefore result in bone abnormalities or fractures in premature babies.

Copper deficiency can also be caused by an inherited disorder called Menkes Disease. Affecting approximately 1 in 100,000 children worldwide, this condition is characterised by sparse, kinky hair; failure to gain weight and grow at the expected rate, and deterioration of the nervous system.

The first signs of Menkes Disease – curly, sparse, coarse, dull, and discoloured hair – usually first develop at 2-3 months of age and therefore monitoring copper levels in babies is a way to catch this rare condition at the earliest possible opportunity.

Testing for Lupus with Randox Complement C4 and Complement C3

Another condition which can affect newborn babies is neonatal lupus, which occurs when the mother’s antibodies affect the foetus. A rare condition, it is an autoimmune disease caused by the body’s immune system attacking its own tissues and organs.

The Complement C4 and Complement C3 proteins, which play an important role in eliminating certain infections, can be used as biomarkers in the diagnosis and monitoring of lupus. Complement C4 deficiency is commonly associated with lupus, as the protein is required to clear damaged cells, promote inflammation, and attack pathogens.

Although there is no cure for lupus at present, the condition is very treatable and usually responds well to a number of different types of medication – especially when treatment is started in the early stages of the disease.

Early diagnosis is therefore imperative, and the Randox Complement C4 and Complement C3 tests can help to diagnose babies with lupus at the earliest possible stage. Randox also offer Acusera Immunology controls.

Monitoring a baby’s anti-infection defences with Randox IgA

IgA (immunoglobulin A) is an antibody present in the cells of the immune system, and plays a crucial role in the immune function of mucous membranes including tears, saliva, and sweat. It is also present in colostrum, often referred to as ‘liquid gold’, which is the first secretion from the mammary glands after giving birth.

It’s the IgA in colostrum and milk that is important in neonatal protection against infection and it is therefore imperative to monitor the levels of this antibody to make sure your baby is receiving the anti-infection defences he or she requires.

Testing for allergic reactions with Randox IgE

IgE (immunoglobulin E) is an antibody released by the immune system as a defence mechanism when it believes the body is at risk. IgE determinations are therefore used as an aid in the diagnosis of allergic diseases.

In babies, an allergen-specific IgE test may be done to look for some kinds of allergies, including food, animal dander, pollen, mould, medicine, dust mites, or insect venom.

Increased concentrations of IgE will confirm that an allergic response has occurred, facilitating further investigation as to the specific allergy present.

Testing for bacterial infection with Randox CRP

C-reactive protein (CRP) is an acute phase protein found in blood plasma and produced by the liver. The concentration levels of CRP increase in response to cytokines which are produced by white blood cells during inflammation, infection and tissue injury.

Testing for this protein can therefore be used in the detection of bacterial infections in neonates – enabling antibiotic prescription and a speedy recovery. If infection is identified, CRP can also be used to monitor treatment response or identify neonatal septicaemia.

Randox is committed to saving and improving lives – at any age and any stage of life.

Our innovative diagnostic technologies are versatile and easily adapted for use in the paediatric setting – keeping your baby healthy now and into the future.

 

For more information on neonatal health tests available from Randox click here or email randoxpr@randox.com or phone 028 9442 2413

 

 

 

 


Measurement Uncertainty Vs Total Error

In a recent article, Error Methods Are More Practical, But Uncertainty Methods May Still Be Preferred, James Westgard comments on the latest developments in the debate on the use of analytical total error (TE) and measurement uncertainty (MU), a debate which has been regularly revisited for the last twenty years. This blog aims to briefly explore the benefits of MU and TE and attempt to draw a conclusion on which is most beneficial in the clinical laboratory.

Where do errors and uncertainty come from?

Many things can undermine a measurement. Measurements are never made under perfect conditions and in a laboratory, errors and uncertainties can come from (Good Practice Guide No. 11, 2012):

  • The measuring instrument – instruments can suffer from errors including bias, changes due to ageing, wear, poor readability, and noise.
  • The item being measured – the sample may be unstable.
  • The measurement process – the analyte may be difficult to measure
  • ‘Imported’ uncertainties – calibration of the instrument.
  • User error – skill and judgement of the operator can affect the accuracy of a measurement.
  • Sampling issues – the measurements you make must be properly representative of the process you are trying to assess. I.e. not using fully commutable controls will mean your quality control process is not reflective of a true patient sample.

Random and systematic errors

The effects that give rise to uncertainty in a measurement can be either random or systematic, below are some examples of these in a laboratory.

  • Random – bubbles in reagent, temperature fluctuation, poor operator technique.
  • Systematic – sample handling, reagent change, instrument calibration (bias), inappropriate method.
Total Error (TE)

Total Error (TE) or Total Analytical Error (TAE) represents the overall error in a test result that is attributed to imprecision (%CV) and inaccuracy (%Bias), it is the combination of both random and systematic errors. The concept of error assumes that the difference between the measured result and the ‘true value’, or reference quantity value, can be calculated (Oosterhuis et al., 2017).

TE is calculated using the below formula:

TE = %BIAS + (1.96 * %CV)

Measurement Uncertainty (MU)

Measurement Uncertainty is the margin of uncertainty, or doubt, that exists about the result of any measurement.

There is always margin of doubt associated with any measurement as well as the confidence in that doubt, which states how sure we are that the ‘true value’ is within that margin. Both the significance, or interval, and the confidence level are needed to quantify an uncertainty.

For example, a piece of string may measure 20 cm plus or minus 1 cm with a 95% confidence level, so we are 95% sure that the piece of string is between 19 cm and 21 cm in length (Good Practice Guide No. 11, 2012).

Standards such as ISO 15189 require that laboratories must determine uncertainty for each test. Measurement Uncertainty is specifically mentioned in section 5.5.8.3:

The laboratory shall determine measurement uncertainty for each measurement procedure in the examination phases used to report measured quantity values on patients’ samples. The laboratory shall define the performance requirements for the measurement uncertainty of each measurement procedure and regularly review estimates of measurement uncertainty.”

Uncertainty is calculated using the below formula:


u = √A2+B2          

                                           U = 2 x u               

Where:
A = SD of the Intra-assay precision
B = SD of the Inter-assay precision
u = Standard Uncertainty
U = Uncertainty of Measurement

Error methods, compared with uncertainty methods, offer simpler, more intuitive and practical procedures for calculating measurement uncertainty and conducting quality assurance in laboratory medicine (Oosterhuis et al., 2018).

Conclusion

It is important not to confuse the terms ‘error’ and ‘uncertainty’.

  • Error is the difference between the measured value and the ‘true value’.
  • Uncertainty is a quantification of the doubt about the measurement result.

Whenever possible we try to correct for any known errors: for example, by applying corrections from calibration certificates. But any error whose value we do not know is a source of uncertainty (Good Practice Guide No. 11, 2012).

While Total Error methods are firmly rooted in laboratory medicine, a transition to the Measurement Uncertainty methods has taken place in other fields of metrology. TE methods are commonly intertwined with quality assurance, analytical performance specifications and Six Sigma methods. However, Total Error and Measurement Uncertainty are different but very closely related and can be complementary when evaluating measurement data.

How Randox can help

Whether you prefer Measurement Uncertainty, Total Error, or believe that they should be used together, Randox can help. Our interlaboratory QC data management software, Acusera 24•7, automatically calculates both Total Error and Measurement Uncertainty. This makes it easier for you to meet the requirements of ISO:15189 and other regulatory bodies.

This is an example of the type of report generated by the 247 software. MU is displayed for each test and each lot of control in use therefore eliminating the need for manual calculation and multiple spreadsheets.

Fig. A

Measurement Uncertainty

Fig. B

Total Error vs Measurement Uncertainty

Fig. A and Fig. B above are examples of report generated by the 24•7 software. Fig.A shows how MU is displayed for each test and each lot of control in use therefore eliminating the need for manual calculation and multiple spreadsheets. Fig. B shows TE displayed for each test.

Measurement Uncertainty vs Total Error
Continue Reading

Acusera Third Party Controls

The Importance of ISO 15189

Contact Us
References

Good Practice Guide No. 11. (2012). Retrieved from http://publications.npl.co.uk/npl_web/pdf/mgpg11.pdf

Hill, E. (2017). Improving Laboratory Performance Through Quality Control.

Oosterhuis, W., Bayat, H., Armbruster, D., Coskun, A., Freeman, K., & Kallner, A. et al. (2017). The use of error and uncertainty methods in the medical laboratory. Clinical Chemistry and Laboratory Medicine (CCLM)56(2). http://dx.doi.org/10.1515/cclm-2017-0341

Westgard, J. (2018). Error Methods Are More Practical, But Uncertainty Methods May Still Be Preferred. Clinical Chemistry64(4), 636-638. http://dx.doi.org/10.1373/clinchem.2017.284406


Randox Food Diagnostics offers innovative multiplex technology for mycotoxin screening within varieties of farmed crops

Mycotoxins are poisonous chemical compounds produced by certain fungi. There are many such compounds, but only a few of them are regularly found in food, farmed crops and end product animal feeds. Since they are produced by fungi, mycotoxins are associated with diseased or mouldy crops. Those that do occur in food may have an impact on livestock and the health of humans and have been associated with conditions such as asthma, respiratory infections and chronic fatigue. The main causes of mycotoxins within stored grains are when the grain is damp, damaged or cracked and kept in insufficient storage conditions.

The formation of mycotoxins is climate-dependent, with temperature and moisture levels directly impacting fungal growth. Evidence shows that climate change is causing increasing temperatures and altered rainfall patterns. Additionally, extreme weather incidents have increased. As a consequence of these changes, increased levels of mycotoxins have been observed in some European crops.

Mycotoxins occur, and exert their toxic effects, in extremely small quantities in foodstuffs. Their identification and quantitative assessment therefore generally require sophisticated sampling, sample preparation, extraction, and analytical techniques. Under practical storage conditions, the aim should be to monitor for the occurrence of fungi. If fungi cannot be detected then there is unlikely to be any mycotoxin contamination. The presence of fungi indicates the potential for mycotoxin production, and the need to consider the fate of the batch of commodity affected.

In order to help the industry Randox Food Diagnostics developed the Evidence Investigator analyser. The Investigator uses Biochip Array Technology (BAT), a technology that was developed by Randox, to detect multiple residues (up to 45) from a single sample. Within farmed crops Randox Food Diagnostics provide testing for different matrices such as: Maize silage, maize, Barley, grass seed, rice, wheat, oats, soya, DDGS, rapeseed as well as livestock and pet foods including premixed feed.

Randox Food Diagnostics offer a mycotoxin screening array on Biochip called Myco 10 which can detect 10 mycotoxins per sample including aflatoxins G1/G2 & B1/B2, ergot alkaloids, fumonisins, paxilline, ochratoxin A, diacetoxyscirpenol, deoxynivalenol (DON), T2 toxin & zeralenone. Also offered is a range of ELISA test kits including ergot alkaloids.

Randox Food Diagnostics is a regular participant in the FAPAS proficiency testing scheme which provides an independent check of a laboratory’s procedures to ensure the delivery of quality results. To read our study on: Biochip Array Technology for the reliable performance of multi-mycotoxin determination in animal feed materials” click here: http://www.randoxfooddiagnostics.com/docs/default-source/randox-fd/posters/bat-mycotoxins-in-animal-feed-materials.pdf?sfvrsn=4

For more information on our arrays for mycotoxins please visit the website: http://www.randoxfood.com/matrices/mycotoxins or contact us via email at: info@randoxfooddiagnostics.com

 

 

 

RX series 123

The RX series celebrate Medical Laboratory Professionals Week

Medical Laboratory Professionals Week is taking place this year from  22nd28th April 2018. This is an annual celebration of professionals working in the laboratory, highlighting and recognising their contributions to medicine and healthcare.

To celebrate Medical Laboratory Professionals Week the RX series interviewed Aidan Murphy, one of our laboratory analysts at Randox to find out more about what his job in the lab entails day-to-day. Aidan works with the RX series of clinical chemistry analysers and Randox QC on a daily basis.

We asked Aidan a few questions about his life as a scientist. See what he gets up to in Randox on a daily basis … 

1. What attracted you to a career in laboratory science?

Science has always interested me in both my academic and personal life, I always aspired to get a science based degree and after achieving this I now hope to improve my laboratory skills to increase my employability.

2. What were your stronger subjects at school?

My strongest subjects in school were biology, chemistry, music and politics. Some of which are more applicable to my current role than others.

3. What does your job in Randox entail?

My job entails a variety of roles ranging from testing Randox diagnostic kits before they’re released to customers as well as maintenance and precision checks of the machines in our lab.

4. What aspects of your job do you enjoy the most?

The independence in my job is great. Knowing what I have to do at the start of each week and the deadlines to do these jobs requires me to organise and prioritise my work accordingly.

5. What are some common preconceived ideas the public have about what laboratory staff do?

From my friends’ ideas of what I do in the lab I have found that a stereotypical image of a lab is one of a dark quiet lab full of strange equipment and even stranger people. However fortunately my lab is a lively one and thankfully with normal people.

6. In your opinion, what are the most important aspects of laboratory work?

Following correct protocols and procedures are imperative in an efficient laboratory. As well as this, good lab practice and good hygiene can have a massive effect on the accuracy of our results.

7. What’s in your lab coat pocket?

My lab coat pockets are quite boring. I have a pair of safety goggles, some post-its and some pens and markers.

8. In what ways does your work make a difference to people’s lives?

Randox is dedicated to improving the quality of diagnostics globally, so knowing that the kits that I have tested are then sent to customers to be used in patient diagnosis gives me a level of job satisfaction that I haven’t got from previous jobs.

Aidan is a fundamental member of the Randox team and plays an essential role in the diagnosis and prevention of disease through his work. Without our valuable laboratory team working extremely hard behind the scenes the lifesaving work we do here at Randox would not be possible.

To find out more about Randox products contact us at theRXseries@randox.com.

Check out our social media sites for more on Medical Laboratory Professionals Week.

RX series 123

The Evidence Series: What is it and how is it changing the diagnostic landscape forever?

Having developed the patented Biochip Array Technology following £250 million investment in diagnostic research and development, we needed a platform that allowed Biochip Array Technology capabilities to be showcased. Step forward the Evidence Series.

The series includes the Evidence, the Evidence Evolution, the Evidence Investigator and the Evidence MultiSTAT. Each analyser has been designed and built with boundary pushing engineering, to ensure financial, labour and time savings for the end user.

Have a read below of the overview of each analyser in the Evidence Series

Evidence Evolution

The world’s first fully automated random-access biochip testing platform, the Evidence Evolution is the world’s most advanced immunoanalyser. With the capability to process up to 2,640 tests per hour, the Evidence Evolution offers complete system integration, as well as the most comprehensive test menu on the market.

Evidence

As the world’s first Biochip Array Technology system, the Evidence immunoanalyser has revolutionised laboratory screening worldwide. With the capability to process 3,960 tests per hour and a sample capacity of 360, the Evidence is ideal for use in a high throughput laboratory.

Evidence Investigator

The Evidence Investigator is a compact, semi-automated benchtop immunoanalyser that offers efficient and comprehensive testing across a range of applications including clinical diagnostics, molecular, toxicology and food diagnostics. The Evidence Investigator boasts a throughput of up to 2,376 tests per hour, offering efficiency without compromising on accuracy.

Evidence MultiSTAT

The Evidence MultiSTAT is a fully automated immunoanalyser that enables on-site simultaneous detection of up to 44 analytes from a single sample of oral fluid, urine or blood. With a three-step process and results generated in less than 20 minutes, the Evidence MultiSTAT is an ideal solution for those with no knowledge of laboratory procedures and offers a throughput of up to 132 tests per hour.

About the Randox Evidence Series

The Evidence Series is set to revolutionise diagnostic testing forever. Offering unrivalled capabilities across all analysers, we truly believe that the Evidence Series range of immunoassay analysers can meet your diagnostic testing capabilities.

For more information on any of the Evidence Series analysers, please visit https://www.randox.com/evidence-series/ or contact us evidenceseries@randox.com.

 

 

 


Metabolism: how Randox is helping to diagnose metabolic conditions

Many people talk about their metabolism as if it is a muscle or organ they can somehow control. In reality, your metabolism refers to a series of chemical processes in each cell that turn the calories you eat into fuel to keep you alive.

Metabolism is the biochemical process of combining nutrients with oxygen to release the energy our bodies need to function. Your resting metabolic rate (RMR) is the number of calories your body burns to maintain vital body functions such as heart rate, brain function and breathing. RMR accounts for up to 75 percent of the calories you burn each day. Knowledge of your individual RMR is a critical piece of information to appropriately establish daily calorie needs.

The body’s major organs — the brain, liver, kidneys, and heart — account for about half of the energy burned at rest, while fat, the digestive system, and especially the body’s muscles account for the rest.

Did you know?

Approximately 20-25% of the world’s adult population have metabolic syndrome?

A common misconception surrounding metabolic health is that it refers solely to your weight, and if you are overweight you are considered to be unhealthy. But in actual fact this may not be entirely true. Good metabolism means that your body is in good overall health, which doesn’t account for just your weight! Common metabolic disorders include genetic metabolic disorders, diabetes and metabolic syndrome. Understanding and testing to see how well your metabolism is functioning is key to ensuring long lasting health.

Genetics

There are a number of genetic metabolic disorders caused by mutations of single genes. Examples of common disordersinclude Gaucher’s disease, hemochromatosis and cystic fibrosis. Gaucher’s disease is a genetic disorder that affects the body’s ability to break down fat that can accumulate in the liver/spleen and bone marrow. Hemochromatosis is a condition that is caused by the over-absorption and build-up of iron while cystic fibrosis is a metabolic disorder that appears as a result of a build-up of mucus in lungs/liver and intestines. Each of these metabolic disorders affect certain organs from functioning properly and therefore your overall healthiness.

Diabetes

Type 2 diabetes is one of the most common types of  metabolic disorders in the world that is expected to affect 592 million people by 2035. It is characterised by high blood sugar, insulin resistance or a lack of insulin being produced by the pancreas. Insulin resistance occurs when the body isn’t able to use insulin the right way which increases blood glucose levels. Insulin is needed for cells to take in glucose (sugar) from the bloodstream and convert it into energy. Over time this lack of insulin can damage the organs in your body.

Metabolic Syndrome

Metabolic syndrome (also known as syndrome X, Reaven’s syndrome, and CHAOS) is not a disease but a collection of risk factors that affect your health; these include high blood pressure, high blood sugar/cholesterol and abdominal fat. Left untreated, these risk factors, together, can lead to long term serious problems including an increased risk of heart disease, stroke and developing type 2 diabetes.

Can you improve your metabolic health?

Yes! The good news is that if you discover that your metabolic health is not up to scratch you can improve it through a combination of diet, exercise and lifestyle adjustments such as:

  • 30 minutes of moderate to intense exercise 5-7 times a week
  • Low-dose aspirin to reduce your risk of stroke or heart attack
  • Quit smoking
  • Medication for blood pressure/cholesterol/ blood sugar
  • Limit alcohol intake
  • Eat a healthy balanced diet

Related Products 

Randox has developed the RX series of clinical chemistry analysers for superior semi-automated and fully automated testing. The RX series extensive dedicated test menu goes beyond routine testing and has many unique and high-performance tests available. Our range of tests covers several parameters to assess your overall metabolic health.

Metabolic Health Profile

Albumin Chloride Potassium
Alkaline Phosphatase  C0Total Sodium
ALT Creatinine Total Bilirubin
AST (GOT) Glucose Total Protein
Direct Bilirubin Lactate Urea
Calcium

The RX series clinical chemistry analysers provide laboratories with a robust and smart solution ensuring you maintain a consistent workflow and can provide accurate results first time, every time. Offering excellent customer support services, our trained engineers are on hand to work with you in preserving the continuity of your operations while maximising the potential of your RX series instrument.Our world-famous test menu of high quality reagents ensures excellence in patient care, guaranteeing unrivalled precision and accuracy reducing costly test re-runs or misdiagnosis and offering complete confidence in results.

For more information visit: https://www.randox.com/clinical-chemistry-analysers/

 

 

 


Could there be 5 types of diabetes?

A peer-reviewed study, published in The Lancet Medical Journal suggests there are five types of diabetes. Could diabetes be more complex than we once thought? Could diabetes be segmented into five separate diseases?

 

What is diabetes?

Diabetes is an incurable disease which prohibits the body’s ability to produce and respond to insulin.  Currently, diabetes is classified into two main forms, type 1 and type 2.

Type 1 diabetes is an autoimmune disease which manifests in childhood.  In type 1 diabetes, the body’s white blood cells attack the insulin-producing cells in the pancreas.  As a result, individuals with Type 1 diabetes rely on the injection of insulin for the remainder of their lives.

Type 1 diabetes affects 10 percent of individuals with diabetes.  96 percent of children diagnosed with diabetes have type 1.  Type 1 diabetes in children is commonly diagnosed between the ages of 10 and 14.  The prevalence of type 1 diabetes in children and young people (under the age of 19) is 1 in every 430-530 and the incidence of type 1 in children under 14 years of age is 24.5/100,000 (Diabetes UK, 2014).

Type 2 diabetes is the result of insulin resistance, meaning that the pancreas does not produce enough insulin or the body’s cells do not respond to the insulin produced.  As type 2 diabetes is a mixed condition, with varying degrees of severity, there are a few methods to manage the disease, including dietary control, medication and insulin injections.

Type 2 diabetes is the most common form of diabetes, affecting 90 percent of individuals with diabetes, and has now become a global burden.  The global prevalence of diabetes has almost doubled from 4.7 percent in 1980 to 8.5 percent in 2014, with a total of 422 million adults living with diabetes in 2014.  It is expected to rise to 592 million by 2035.  In 2012, diabetes accounted for 1.5 million deaths globally with hypertension causing a further 2.2 million deaths.  43 percent of these deaths occurred before 70 years of age.  Previously type 2 diabetes was commonly seen in young adults but is now commonly seen in children as well.  In 2017, 14% more children and teenagers in the UK were treated for diabetes compared to the year before (World Health Organization, 2016).

In both forms of diabetes, hyperglycemia can occur which can lead to number of associated complications including renal disease, cardiovascular disease, nerve damage and retinopathy.

 

The novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables – peer-review study

This new research studied 13,270 individuals from different demographic cohorts with newly diagnosed diabetes, taking into consideration body weight, blood sugar control and the presence of antibodies, in Sweden and Finland.

This peer-reviewed study identified 5 disease clusters of diabetes, which have significantly different patient characteristics and risk of diabetic complications.  The researchers also noted that the genetic associations in the clusters differed from those seen in traditional type 2 diabetes.

Cluster One – Severe autoimmune diabetes (SAID)

SAID is similar to type 1 diabetes.  SAID manifests in childhood, in patients with a low BMI, have poor blood sugar and metabolic control due to insulin deficiency and GADA.  6% of individuals studied in the ANDIS study were identified with having SAID.

Cluster Two – Severe insulin-deficient diabetes (SIDD)

SIDD is similar to SAID, however, GADA is negative.  This means that the characteristics of SIDD are the same as SAID, young, of a healthy weight and struggled to make insulin, however, SIDD is not the result of an autoimmune disorder as no autoantibodies are present.  Patients have a higher risk of diabetic retinopathy.  18% of subjects in the ANDIS study were identified with having SIDD.

Cluster Three – Severe insulin-resistant diabetes (SIRD)

SIRD is similar to that of type 2 diabetes and is characterised by insulin-resistance and a high BMI.  Patients with SIRD are the most insulin resistant and have a significantly higher risk of kidney disease, and microalbuminuria, and non-alcoholic fatty liver disease.  15% of subjects in the ANDIS study were identified as having SIRD.

Cluster Four – Mild obesity-related diabetes (MOD)

MOD is a mild form of diabetes which generally affects a younger age group. This is not characterised by insulin resistance but by obesity as their metabolic rates are close to normal.  22% of subjects in the ANDIS study were identified as having MOD.

Cluster Five – Mild age-related diabetes (MARD)

MARD is the most common form of diabetes manifesting later in life compared to the previous four clusters.  Patients with MARD have mild problems with glucose regulation, similar to MOD.  39% of subjects in the ANDIS study were identified with having MARD.

This new sub-classification of diabetes could potentially enable doctors to effectively diagnose diabetes earlier, through the characterisation of each cluster, including: BMI measurements, age, presence of autoantibodies, measuring HbA1c levels, ketoacidosis, and measuring fasting blood glucose levels.  This will enable a reduction in the incidence of diabetes complications and the early identification of associated complications, and so patient care can be tailored, thus improving healthcare (NHS, 2018) (The Week, 2018) (Ahlqvist, et al., 2018) (Collier, 2018) (Gallagher, 2018).

The Randox diabetes reagents cover the full spectrum of laboratory testing requirements from risk assessment, using our Adiponectin assay, to disease diagnosis and monitoring, using our HbA1c, glucose and fructosamine assays, to the monitoring of associated complications, using our albumin, beta-2 microglobulin, creatinine, cystatin c, d-3-hydroxybutyrate, microalbumin and NEFA assays.

Whilst this study is valuable, alone it is not sufficient for changes in the diabetes treatment guidelines to be implemented, as the study only represents a small proportion of those with diabetes.  For this study to lead the way, the clusters and associated complications will need to be verified in ethnicities and geographical locations to determine whether this new sub-stratification is scientifically relevant.

 

References

Ahlqvist, E. et al., 2018. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. [Online]
Available at: http://www.thelancet.com/journals/landia/article/PIIS2213-8587(18)30051-2/fulltext?elsca1=tlpr
[Accessed 16 April 2018].

Collier, J., 2018. Diabetes: Study proposes five types, not two. [Online]
Available at: https://www.medicalnewstoday.com/articles/321097.php
[Accessed 16 April 2018].

Diabetes UK, 2014. Diabetes: Facts and Stats. [Online]
Available at: https://www.diabetes.org.uk/resources-s3/2017-11/diabetes-key-stats-guidelines-april2014.pdf
[Accessed 16 April 2018].

Gallagher, J., 2018. Diabetes is actually five seperate diseases, research suggests. [Online]
Available at: http://www.bbc.co.uk/news/health-43246261
[Accessed 16 April 2018].

NHS, 2018. Are there actually 5 types of diabetes?. [Online]
Available at: https://www.nhs.uk/news/diabetes/are-there-actually-5-types-diabetes/
[Accessed 16 April 2018].

The Week, 2018. What are the five types of diabetes?. [Online]
Available at: http://www.theweek.co.uk/health/92048/what-are-the-five-types-of-diabetes
[Accessed 16 April 2018].

World Health Organization, 2016. Global Report on Diabetes, Geneva: World Health Organization.

If you are a clinician, dietitian or laboratory who are interested in running diabetes assays, Randox offer a wide range of high-quality routine and niche assays including: fructosamine, glucose, HbA1c for diagnosing and monitoring diabetes, albumin, beta-2 microglobulin, creatinine, cystatin c, NEFA, microalbumin, and d-3-hydroxybutyrate to monitor associated complications, and adiponectin  as a biomarker for diabetes risk assessment.  These assays can be run on most automated biochemistry analysers.

Instrument Specific Applications (ISA’s) are available for a wide range of biochemistry analysers. Contact us to enquire about your specific analyser.

For more information, visit: https://www.randox.com/diabetes-reagents or email: reagents@randox.com 


Request a meeting
×
Make an Enquiry - RX series
×
Make an Enquiry - Reagents
×
Kit Insert Request - Reagents
  • Signing up to our mailing list is quick and easy. We do not wish to send you any spam or junk email, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promise never to sell your data and we will keep all your details, safe and secure. Read more in our Privacy Policy.
×
Kit Insert Request - Reagents
  • Signing up to our mailing list is quick and easy. We do not wish to send you any spam or junk email, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promise never to sell your data and we will keep all your details, safe and secure. Read more in our Privacy Policy.
×
Make an Enquiry - Reagents
×
Make an Enquiry - Quality Control
×
Make an Enquiry - RIQAS
×
Make an Enquiry - RIQAS
×
Make an Enquiry - Quality Control
×
Make an Enquiry
  • Signing up to our mailing list is quick and easy. We do not wish to send you any spam or junk email, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promise never to sell your data and we will keep all your details, safe and secure. Read more in our Privacy Policy.
×
Make an Enquiry - Biochip
  • This field is for validation purposes and should be left unchanged.
×
Make an Enquiry - Molecular
  • Signing up to our mailing list is quick and easy. We do not wish to send you any spam or junk email, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promise never to sell your data and we will keep all your details, safe and secure. Read more in our Privacy Policy.
  • This field is for validation purposes and should be left unchanged.
×
Make an Enquiry - Future Diagnostics
×
Make an Enquiry - RX series (Product)
×
Make an Enquiry - Quality Control
  • Signing up to our mailing list is quick and easy. We do not wish to send you any spam or junk email, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promise never to sell your data and we will keep all your details, safe and secure. Read more in our Privacy Policy.
×
Make an Enquiry - RIQAS
  • Signing up to our mailing list is quick and easy. We do not wish to send you any spam or junk email, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promise never to sell your data and we will keep all your details, safe and secure. Read more in our Privacy Policy.
×
Make an Enquiry - Reagents
  • Signing up to our mailing list is quick and easy. We do not wish to send you any spam or junk email, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promise never to sell your data and we will keep all your details, safe and secure. Read more in our Privacy Policy.
×
Por favor, introduzca sus datos para ver nuestro Ćŗltimo seminario
×
Wyślij zapytanie
  • Rejestracja na naszej liście mailowej jest szybka i łatwa. Nie chcemy wysyłać e-maili zawierających spam lub wiadomości, ktĆ³re są automatycznie przekierowywane do kosza. W zawiązku z czym firma Randox deklaruje, że będzie wysyłac tylko informacje na temat nowych produktĆ³w,akutalizacji obecnych, trendĆ³w rynkowych, wydarzeń branżowych itp. Firma Randox Laboraotries obiecuje, że Państwa dane nie będą nigdzie przekazane, a przechowywanie owych danych będzie się odbywało z zachowaniem największego bezpieczeństwa. Prosimy o przeczytani naszje Polityki Prywatności.
×
Wyślij zapytanie
  • Rejestracja na naszej liście mailowej jest szybka i łatwa. Nie chcemy wysyłać e-maili zawierających spam lub wiadomości, ktĆ³re są automatycznie przekierowywane do kosza. W zawiązku z czym firma Randox deklaruje, że będzie wysyłac tylko informacje na temat nowych produktĆ³w,akutalizacji obecnych, trendĆ³w rynkowych, wydarzeń branżowych itp. Firma Randox Laboraotries obiecuje, że Państwa dane nie będą nigdzie przekazane, a przechowywanie owych danych będzie się odbywało z zachowaniem największego bezpieczeństwa. Prosimy o przeczytani naszje polityki prywatności.
×
Wyślij zapytanie
  • Rejestracja na naszej liście mailowej jest szybka i łatwa. Nie chcemy wysyłać e-maili zawierających spam lub wiadomości, ktĆ³re są automatycznie przekierowywane do kosza. W zawiązku z czym firma Randox deklaruje, że będzie wysyłac tylko informacje na temat nowych produktĆ³w,akutalizacji obecnych, trendĆ³w rynkowych, wydarzeń branżowych itp. Firma Randox Laboraotries obiecuje, że Państwa dane nie będą nigdzie przekazane, a przechowywanie owych danych będzie się odbywało z zachowaniem największego bezpieczeństwa. Prosimy o przeczytani naszje polityki prywatności.
×
Wyślij zapytanie
    Rejestracja na naszej liście mailowej jest szybka i łatwa. Nie chcemy wysyłać e-maili zawierających spam lub wiadomości, ktĆ³re są automatycznie przekierowywane do kosza. W zawiązku z czym firma Randox deklaruje, że będzie wysyłac tylko informacje na temat nowych produktĆ³w,akutalizacji obecnych, trendĆ³w rynkowych, wydarzeń branżowych itp. Firma Randox Laboraotries obiecuje, że Państwa dane nie będą nigdzie przekazane, a przechowywanie owych danych będzie się odbywało z zachowaniem największego bezpieczeństwa. Prosimy o przeczytani naszje polityki prywatności .
×
ź·€ķ•˜ģ˜ ė¬øģ˜ ģ‚¬ķ•­ ģ œģ¶œ
    Signing up to our mailing list is quick and easy. We do not wish to send you any spam or junk email, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promise never to sell your data and we will keep all your details, safe and secure. Read more in our Privacy Policy.
×
ź·€ķ•˜ģ˜ ė¬øģ˜ ģ‚¬ķ•­ ģ œģ¶œ
×
ź·€ķ•˜ģ˜ ė¬øģ˜ ģ‚¬ķ•­ ģ œģ¶œ
×
ź·€ķ•˜ģ˜ ė¬øģ˜ ģ‚¬ķ•­ ģ œģ¶œ
×
Downloads
×
Contact

<p>

    Randox Clinical Chemistry Products Join the Randox Laboratories Mailing List * I would like to receive emails with new product releases and updates from Randox Laboratories, market trends, and more. I do not want to receive email marketing from Randox. Signing up to our mailing list is quick and easy. We do not want to send you any spam or junk emails, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promises never to sell your data and we will keep all your details, safe and secure. Read more in our Privacy Policy.
</p>

×
Enquire Now - Coronavirus Testing
  • Signing up to our mailing list is quick and easy. We do not wish to send you any spam or junk email, therefore, you can expect to receive mailshots including new product launches and updates, market trends, attendance at key industry events and much more. Randox Laboratories promise never to sell your data and we will keep all your details safe and secure. Read more in our Privacy Policy.
×