Rheumatoid Arthritis and Women’s Health
Rheumatoid Arthritis and Women’s Health
Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterised by pain, swelling and stiffness in joints which commonly affects the hands, wrists and feet. Whilst both men and women can suffer from rheumatoid arthritis, it is more commonly seen in women than men.
Rheumatoid arthritis is the most common autoimmune disease with a higher prevalence rate compared to lupus, multiple sclerosis, type 1 diabetes, Crohn’s disease and psoriasis.
(Simmons, 2013)
The incidence rates of rheumatoid arthritis differ between men and women. The onset of RA occurs much earlier for women, for most, during their 30’s and 40’s. In an American study, it was noted that the incidence rates peak for women around the ages of 55 to 64, compared to 75 to 84 years of age for men.
(Simmons, 2013)
As most women are diagnosed with rheumatoid arthritis in their 30’s and 40’s, a study found that the diagnosis negatively impacts both the body and mind of women, as indicated in their pain, disease activity, and quality of life scores. This is due to women being diagnosed at a time when their burdens are the heaviest as this is the time when women are most likely to have children or are raising children combined with work and socialising.
Changes in hormone levels also impacts women. It has been noted that before a menstrual period, women find the symptoms of rheumatoid arthritis to be more severe, but settles during their cycle. Also, due to the changes in hormone levels during pregnancy, 50 – 60% of women with rheumatoid arthritis noticed that their symptoms improved.
The key to managing rheumatoid arthritis is to start the treatment as early as possible as it can halt or slow the disease, preventing joint damage and complications, including: osteoporosis and cardiovascular disease. Rheumatoid arthritis increases the risk of heart attack by 60%. To start treatment as early as possible, it is important that it is diagnosed as early as possible.
Randox offer a number of key assays for the diagnosis of rheumatoid arthritis.
Rheumatoid factor is the most routinely run test to diagnose rheumatoid arthritis as 80% of rheumatoid arthritis patients test positive for rheumatoid factor. The Randox Rheumatoid Factor reagent offers the following benefits:
- Wide measuring range of 6.72 – 104lU/ml for the accurate measurement of clinically important results
- Accurate assessment of rheumatoid factor titre (calibrant standardised against primary WHO material; 1st British Standard 64/2)
- No interference from complement C1q
- Automated immunoturbidimetric assay
- Applications available for a wide range of biochemistry analysers, detailing instrument-specific settings
It has been found that complement C4 and CRP upregulation indicates the middle to late stages of rheumatoid arthritis.
The Randox Complement C4 reagent offers the following benefits:
- Wide measuring of 3.41 – 152mg/dl for the accurate measurement of clinically significant results
- Limited interferences from Bilirubin, Haemoglobin, Intralipids, and Triglycerides, producing more accurate results
- Automated immunoturbidimetric assay
- Applications available for a wide range of biochemistry analysers, detailing instrument-specific settings
The Randox High-Sensitivity CRP reagent offers the following benefits:
- Wide measuring of 0.477 – 10mg/l fir the accurate measurement of clinically significant results
- Liquid ready-to-use reagents for convenience and ease of use
- Applications available for a wide range of biochemistry analysers, detailing instrument-specific settings
Neonatal health testing from Randox: keeping your baby healthy now and into the future
Most newborns enter the world healthy. But sometimes, infants develop conditions that require medical tests and treatment. Newborns are particularly at risk for some diseases, and in particular infections, because their immune systems aren’t developed enough to fight bacteria, viruses, and parasites.
At Randox we offer a number of accurate and reliable tests capable of detecting illnesses in newborn babies, enabling early medical intervention to allow for the best possible outcome for the baby.
Testing for Jaundice with Randox Bilirubin
In the routine care of newborns, a test for bilirubin is commonly conducted.
Bilirubin is formed by the breakdown of haemoglobin in the spleen, liver and bone marrow. It travels to the liver where it is secreted into the bile ducts as bile, and stored in the gallbladder where it is later released into the small intestines for digestion.
Increased levels of bilirubin within the body are associated with a condition called jaundice, which occurs in toxic or infectious diseases of the liver. The most common symptom of jaundice is a yellow pigmentation of the skin.
Elevated levels of bilirubin may also arise as a result of an obstruction in the bile duct or gall bladder, as a result of haemolysis (the destruction of red blood cells), or by the liver not actively treating the haemoglobin it is receiving.
Therefore the Randox Bilirubin test is essential in the screening, monitoring and diagnosis of hepatic (liver function) disorders and jaundice in newborn babies.
Neonatal jaundice, otherwise known as hyperbilirubinemia, is extremely common in babies, because nearly every newborn develops a somewhat elevated bilirubin level during the first week of life.
Side effects may include excess sleepiness or poor feeding, but in some more extreme cases babies may experience seizures, cerebral palsy, delayed intellectual development, or physical abnormalities.
Early and accurate detection is therefore extremely important – making bilirubin testing fundamental. To ensure the precision of the bilirubin tests conducted in paediatric testing, Randox also offers Acusera Bilirubin Elevated Quality Control.
Monitoring the destruction of red blood cells with Randox G-6-PDH
Glucose-6-Phosphate Dehydrogenase (G-6-PDH) is an enzyme located on the X-chromosome, and so is found in every bodily cell as soon as a baby is born.
G-6-PDH is involved in the normal processing of carbohydrates and plays a critical role in red blood cells, protecting them from damage and destruction. Depleted levels of G-6-PDH can therefore cause red blood cells to become particularly vulnerable to haemolysis. G-6-PDH deficiency, which causes rapid heart rate, shortness of breath, excess tiredness, and mild to severe jaundice in new-borns, affects more than 400 million people globally.
During a baby’s new-born screening, a test for the G-6-PDH enzyme will be conducted to check for this deficiency disorder. Early diagnosis is imperative, as untreated haemolysis can result in haemolytic anaemia.
Genetic Disease Screening with Randox Copper
Copper is an essential mineral in human nutrition, and is mainly found in the brain, liver, kidneys, heart and skeletal muscle.
It aids in some of the key bodily functions including the production of red blood cells, the maintenance of nerve cells and the immune system, and the formation of bone and connective tissue. A deficiency in this mineral can therefore result in bone abnormalities or fractures in premature babies.
Copper deficiency can also be caused by an inherited disorder called Menkes Disease. Affecting approximately 1 in 100,000 children worldwide, this condition is characterised by sparse, kinky hair; failure to gain weight and grow at the expected rate, and deterioration of the nervous system.
The first signs of Menkes Disease – curly, sparse, coarse, dull, and discoloured hair – usually first develop at 2-3 months of age and therefore monitoring copper levels in babies is a way to catch this rare condition at the earliest possible opportunity.
Testing for Lupus with Randox Complement C4 and Complement C3
Another condition which can affect newborn babies is neonatal lupus, which occurs when the mother’s antibodies affect the foetus. A rare condition, it is an autoimmune disease caused by the body’s immune system attacking its own tissues and organs.
The Complement C4 and Complement C3 proteins, which play an important role in eliminating certain infections, can be used as biomarkers in the diagnosis and monitoring of lupus. Complement C4 deficiency is commonly associated with lupus, as the protein is required to clear damaged cells, promote inflammation, and attack pathogens.
Although there is no cure for lupus at present, the condition is very treatable and usually responds well to a number of different types of medication – especially when treatment is started in the early stages of the disease.
Early diagnosis is therefore imperative, and the Randox Complement C4 and Complement C3 tests can help to diagnose babies with lupus at the earliest possible stage. Randox also offer Acusera Immunology controls.
Monitoring a baby’s anti-infection defences with Randox IgA
IgA (immunoglobulin A) is an antibody present in the cells of the immune system, and plays a crucial role in the immune function of mucous membranes including tears, saliva, and sweat. It is also present in colostrum, often referred to as ‘liquid gold’, which is the first secretion from the mammary glands after giving birth.
It’s the IgA in colostrum and milk that is important in neonatal protection against infection and it is therefore imperative to monitor the levels of this antibody to make sure your baby is receiving the anti-infection defences he or she requires.
Testing for allergic reactions with Randox IgE
IgE (immunoglobulin E) is an antibody released by the immune system as a defence mechanism when it believes the body is at risk. IgE determinations are therefore used as an aid in the diagnosis of allergic diseases.
In babies, an allergen-specific IgE test may be done to look for some kinds of allergies, including food, animal dander, pollen, mould, medicine, dust mites, or insect venom.
Increased concentrations of IgE will confirm that an allergic response has occurred, facilitating further investigation as to the specific allergy present.
Testing for bacterial infection with Randox CRP
C-reactive protein (CRP) is an acute phase protein found in blood plasma and produced by the liver. The concentration levels of CRP increase in response to cytokines which are produced by white blood cells during inflammation, infection and tissue injury.
Testing for this protein can therefore be used in the detection of bacterial infections in neonates – enabling antibiotic prescription and a speedy recovery. If infection is identified, CRP can also be used to monitor treatment response or identify neonatal septicaemia.
Randox is committed to saving and improving lives – at any age and any stage of life.
Our innovative diagnostic technologies are versatile and easily adapted for use in the paediatric setting – keeping your baby healthy now and into the future.
For more information on neonatal health tests available from Randox click here or email randoxpr@randox.com or phone 028 9442 2413
Complement C4 – Biomarker for Systemic Lupus Erythematosus (SLE)
Systemic Lupus Erythematosus (SLE) is an autoimmune disorder associated with a deficiency in complement C4. Complement C4 is one of nine components of the complement system which is an integral part of the immune system that enhances (complements) the ability of antibodies and phagocytic cells to clear microbes and damaged cells from the host, promote inflammation, and attack the cell membrane of pathogens.
Complement C4 is a vital component of two immunology pathways: Classical pathway and Mannrose Binding Lectin (MBL) pathway.
The classical pathway is triggered by antibody-antigen complexes which induces a conformational change in the C1 complex. The activated C1 complex cleaves the C4 component, resulting in a reactive C4b which covalently binds to proteins or polysaccharides at the surface in close proximity of the C1 component. The bound C4b complexes binds to the C2 component rendering C2 for proteolysis by C1.
The MBL pathway is activated through the binding of MBL to mannose residues on the pathogen surface. This in turn activates the MBL-associated serine proteases, MASP-1 and MASP-2, which activates the C4 and C2 components, to form the C3 convertase, C4b2a. The C4b2a complex splits C3 into two fragments which causes the release of vasoactive mediators such as histamine.
Complement C4 deficiency is commonly associated with systemic lupus erythematosus (SLE).
According to lupus.org, 16,000 new cases of lupus are reported each year. Approximately 1 in 250 people may end up developing SLE at some point with 90% of SLE patients being female aged between 15-44 years. The causes of SLE are unknown, but are believed to be linked to environmental, genetic, and hormonal factors. 1.5 million Americans are living with diagnosed lupus.
There are four forms of lupus:
- Systemic – accounts for approximately 70% of all lupus cases. In half of these cases, a major organ or tissue in the body, such as the heart, lungs, kidneys, or brain will be affected.
- Cutaneous lupus – accounts for approximately 10% of all lupus cases and only affects the skin.
- Drug-induced lupus accounts for approximately 10% of all lupus cases and is caused by high doses of certain medications.
- Neonatal lupus is a rare condition in which the mother’s antibodies affect the fetus. At birth, the baby may have a skin rash, liver problems, or low blood cell counts, but these symptoms typically disappear completely after six months with no lasting effects.
The Randox Complement C4 assay
The Randox Complement C4 assay is used for the quantitative in vitro determination of complement C4 concentration in serum. The Randox Complement C4 assay can be used as a biomarker in the diagnosis and monitoring of SLE. It is the cell-bound levels of processed complement activation products, especially E-C4d (erythrocyte-bound C4) that makes the complement C4 assay a biomarker for SLE.
Key Features of the Randox Complement C4 assay
Liquid ready-to-use reagents – The Randox reagent comes in a convenient liquid format requiring minimal preparation thus reducing the risk of errors.
Exceptional correlation with standard methods – The Randox methodology was compared against other commercially available methods and the Randox Complement C4 assay showed a correlation coefficient of r=0.98.
Wide measuring range – The healthy range for Complement C4 is 7 -49 mg/dl. The Randox Complement C4 assay can comfortably detect levels outside of the healthy range measuring between 2.90 – 152 mg/dl.
Excellent stability – Stable until expiry date when stored at +2 to +8°C.