Featured Reagent – Cystatin C
Featured Reagent – Cystatin C
Featured Reagent | Cystatin C
Back to Reagents Resource Hub >
Kidney Disease
Kidney disease is a huge global health crisis, increasing healthcare costs, mortality and morbidity rates. The global prevalence of chronic kidney disease (CKD) has continued to rise during a short lifespan. In 2016, 1 in 10, equivalent to 10 percent of the global population were identified with having CKD with the highest prevalence’s reported in Europe, the Middle East, East Asia and Latin America, estimated at 12 per cent and the lowest in South Asia, estimated at 7 percent1.
The early risk assessment of renal function is vital. In 1990, CKD was ranked the 27th leading cause of death in the Global Burden of Disease study2, rising to 18th 3 in 2010, 13th in 20132 and 12th by 2015. From 2005-2015, the overall CKD mortality rate has risen by 31.7 percent, accounting for 1.1 million deaths globally in 20154.
Inadequacies of Traditional CKD Biomarkers
The most commonly used screening test for renal impairment is creatinine. When testing for CKD using creatinine, certain factors must be taken into consideration, including: age, gender, ethnicity, and muscle mass. As such, black men and black women will present with higher creatinine levels compared to white men and white women respectively5.
Serum creatinine is not an adequate screening test for renal impairment in the elderly (65 years of age and over) due to their decreased muscle mass. As such, patients are misdiagnosed, thus, patients with severe renal failure are receiving suboptimal care6.
The main disadvantage of using creatinine to screen for renal impairment is that up to 50 percent of renal function can be lost before significant creatinine levels become detectable as creatinine is insensitive to small changes in the glomerular filtration rate (GFR). Consequently, treatment is not provided at the appropriate time which can be fatal, thus, an earlier and more sensitive biomarker for renal function is vital7.
Biological Significance
Cystatin C is a small (13 kDa) cysteine proteinase inhibitor, produced by all nucleated cells at a constant rate. Cystatin C travels through the bloodstream to the kidneys where it is freely filtered by the glomerular membrane, resorbed and fully catabolised by the proximal renal tubes. Consequently, cystatin C is the ideal biomarker of GFR function8.
Clinical Significance of Cystatin C
The National Institute for Health and Care Excellence (NICE) (2014) guidelines recommend cystatin C testing due to its higher specificity for significant disease outcomes than those based on creatinine. As such, eGFR cystatin C measurements will significantly reduce the number of misdiagnosed patients, thus reducing the overall CKD burden9.
In 2017, a systematic literature search found 3,500 investigations into cystatin C as a marker of GFR. The study concluded that eGFRcystatinc was a significantly more superior than eGFRcreatinine10.
Benefits of Cystatin C
The Randox cystatin C assay utilises the latex enhanced immunoturbidimetric method offering numerous key features:
A niche product from Randox meaning that Randox are one of the only manufacturers to provide the cystatin C test in an automated biochemistry format
An automated assay which removes the inconvenience and time consumption associated with traditional ELISA testing
Applications are available detailing instrument-specific settings for the convenient use of the Randox cystatin C assay on a wide range of biochemistry analysers
Liquid ready-to-use reagents for convenience and ease-of-use
Latex enhanced immunoturbidimetric method delivering high performance
Extensive measuring range for the detection of clinically important results
Complementary controls and calibrators available offering a complete testing package
Limited interference from Bilirubin, Haemoglobin, Intralipid® and Triglycerides
Cystatin C does not suffer from a ‘blind area’ like creatinine due to cystatin C’s sensitivity to small changes in GFR enabling the early detection renal impairment
An exceptional correlation coefficient of r=1.00 when compared against standard methods
References
[1] Bello, AK, et al. Global Kidney Health Atlas: A report by the Internal Society of Nephrology on the current state of organization and structures for kidney care across the globe. Brussels : Internal Society of Nephrology, 2017.
[2] Bikbov, Boris. Chronic kidney disease: impact on the global burden of mortality and morbidity. The Lancet. [Online] 2015. http://www.thelancet.com/campaigns/kidney/updates/chronic-kidney-disease-impact-on-global-burden-of-mortality-and-morbidity.
[3] National Kidney Foundation. Global Facts: About Kidney Disease. National Kidney Foundation. [Online] National Kidney Foundation, 2015. https://www.kidney.org/kidneydisease/global-facts-about-kidney-disease#_ENREF_1.
[4] Neuen, Brendon Lange, et al. Chronic kidney disease and the global NCDs agenda. s.l. : BMJ Global Health, 2017.
[5] Lascano, Martin E and Poggio, Emilio D. Kidney Function Assessment by Creatinine-Based Estimation Equations. Cleveland Clinic. [Online] August 2010. [Cited: May 16, 2018.] http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/nephrology/kidney-function/.
[6] Swedko, Peter J, et al. Serum Creatinine Is an Inadequate Screening Test for Renal Failure in Elderly Patients. Research Gate. [Online] February 2003. [Cited: May 6, 2018.] https://www.researchgate.net/publication/8243393_Serum_Creatinine_Is_an_Inadequate_Screening_Test_for_Renal_Failure_in_Elderly_Patients.
[7] Mishra, Umashankar. New technique developed to detect chronic kidney disease. Business Line. [Online] May 07, 2018. [Cited: May 17, 2018.] https://www.thehindubusinessline.com/news/science/new-technique-to-detect-chronic-kidney-disease/article23803316.ece.
[8] Chew, Janice SC, et al. Cystatin C-A Paradigm of Evidence Based Laboratory Medicine. NCBI. [Online] May 29, 2008. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533150/.
[9] National Institute for Health and Care Excellence. Chronic kidney disease in adults: assessment and management: 2 Implementation: getting started. NICE. [Online] January 2015. [Cited: April 19, 2018.] https://www.nice.org.uk/guidance/cg182/chapter/implementation-getting-started.
[10] Grubb, Anders. Cystatin C is Indispensable for Evaluation of Kidney Disease. NCBI. [Online] December 28, 2017. [Cited: April 19, 2018.] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746836/.
MORE FEATURED REAGENTS
For more featured reagents click VISIT
Title
Cardiac Testing Panel
Regular cardiovascular disease (CVD) screening is vital to ensure that cardiac risk factors are detected in the earliest stages 1. Early CVD diagnosis aids in reducing the risk of a secondary cardiovascular event through ensuring early intervention and effective treatment plan implementation, thus aiding in the prevention of premature deaths. Early risk assessment is imperative in those with the greatest risk of CVD. This is evaluated through the identification of one or more risk factors including: hypertension, diabetes or hyperlipidaemia 2, 3. It is believed by 2030, almost 23.6 million people will die from CVD, mainly coronary heart disease (CHD) and cerebrovascular disease (CVA), and this is projected to remain the leading causes of death. This provides further confirmation that early diagnosis is vital to prevent and reduce the number of deaths attributed to CVD 3.
Randox offers an extensive range of 21 third party cardiac & lipid testing assays which includes superior performance and unique tests, which are internationally recognised as being of the highest quality; producing accurate and precise results.
Niche Tests
–
Randox offers a range of niche tests including: Adiponectin, H-FABP and sdLDL-C. This means that Randox are one of the only manufacturers to offer these tests in an automated biochemistry format.
Superior Performance Tests
–
Randox offers numerous cardiac & lipid testing assays that utilise a superior methodology, providing more accurate results. For example, the Randox Lp(a) test is one of the only methodologies on the market that detects the non-variable part of the Lp(a) molecule and therefore suffers from minimal size related bias.
Strong Correlation with Standard Methods
–
The Randox cardiac & lipid testing assays display strong correlations when compared against standard methods, offering trust and confidence in results.
Wide Measuring Ranges
–
The Randox cardiac & lipid testing assays can comfortably detect levels outside of the healthy range for the accurate detection of abnormal levels, offering peace of mind in patient samples.
Applications Available
–
Applications are available detailing instrument-specific settings for the convenient use of the Randox cardiac & lipid testing assays on a wide range of clinical chemistry analysers.
The in vitro diagnostics market is continuously adapting to the changes in laboratory testing. Consequently, Randox have continued to reinvest in R&D to produce a variety of cardiac & lipid testing assays, including superior performance & unique tests, offering laboratories choice, quality and innovation.
The Randox Reagents range of cardiac & lipid testing assays encompasses superior performance & unique tests enabling laboratories to expand their routine test menus without expanding their labs. Not only does Randox Reagents provide confidence in patient results, the outstanding assay development in combination with superior performance methodologies contribute to the uncompromised quality offered by Randox Reagents. Moreover, laboratories can benefit from advanced assay testing with Randox Reagents.
–
Adiponectin has been identified as having pleiotropic functions widely associated with anti-atherogenic, anti-diabetic, cardioprotective and anti-inflammatory effects. Adiponectin levels inversely correlate with insulin levels, BMI, triglyceride levels, insulin resistance (IR), glucose, and most importantly, visceral fat accumulation 4.
–
A niche product from Randox, H-FABP is a highly sensitive and early risk marker of acute coronary syndrome, detectable as early as 30 minutes following the onset of an ischaemic episode. The implementation of a combined H-FABP high sensitivity troponin algorithm at an emergency department could aid in the identification of non-AMI patients on arrival, with the potential to reduce hospital admission by 36.8% 5.
–
Hyperhomocysteinemia can cause inflammation of the endothelium. Failure to lower homocysteine levels can cause further inflammation of the arteries, veins, and capillaries causing atherosclerosis. Women with elevated levels of homocysteine have a 3-fold increased risk of CVD, whereas men have a 2-fold increased risk 6.
–
A unique product from Randox, Lp(a) has proven to have a causal role in the pathogenesis of atherosclerotic and thrombotic vascular diseases 7. The Randox Lp(a) assay is one of the only methodologies on the market that detects the non-variable part of the Lp(a) molecule and therefore suffers minimal size related bias.
–
A niche product from Randox, sdLDL-C, a subtype of LDL cholesterol, can more readily permeate the inner arterial wall. Research indicates that individuals with a predominance of sdLDL-C have a 3-fold increased risk of myocardial infarction 8.
Current Challenges
A combination of lifestyle factors can lead to a gradual build-up of fatty material (atheroma) in the arterial wall. The widespread accumulation of atheroma’s, otherwise known as atherosclerosis, can lead CHD. The disease develops gradually over many years, however as the symptoms are scarce, patients are unaware of the disease until chest pain onset. Pain and discomfort may arise if the arteries become so narrow that a limited amount of oxygenated blood can reach the heart (angina). If the problem persists and a piece of the atheroma breaks away a clot can form. If the clot blocks the coronary artery, the oxygen supply to the heart will be stopped resulting in myocardial infarction (heart attack). Continuous development of CHD causes the heart to weaken which can lead to heart failure 9.
Cerebrovascular disease includes a range of conditions that affect the flow of blood through the brain. This change in blood flow can lead to a temporary or permanent impairment of a patient’s brain function. The most common type of cerebrovascular disease is stroke. There are three main types of stroke; transient ischaemic attack, ischaemic stroke and haemorrhagic stroke, however an estimated 87% of strokes are ischaemic. An ischaemic stroke occurs when a blood clot prevents blood flow to the brain. An ischaemic stroke can be embolic, where the blood clot travels from another part of the body to the brain, or thrombotic, where the clot forms in the blood vessel in your brain 10.
PAD is a circulatory problem where narrowing of the arteries reduces the blood flow to the limbs. It can also be a sign of widespread accumulation of fatty deposits in the arteries, otherwise known as atherosclerosis. This could mean that there is reduced blood flow to the heart, brain and legs. The symptoms associated with PAD are mild or non-existent however in some cases patients can experience claudication symptoms. Claudication symptoms involve painful cramping in the hips, thighs or calf muscles triggered after completing certain activities such as walking. The location of pain depends on the position of the narrowed artery; however, the calf is most common. Other signs include leg numbness, a change in leg colour, shiny skin and weak pulse in the legs or feet. The pain of claudication can disappear after a few minutes rest, however, if the disease is left to progress the pain may occur when at rest and can become intense enough to disrupt sleep 11.
Want to know more?
Contact us or download our Cardiology & Lipid Testing brochure to learn more.
Related Products
Reagents Home
Featured Reagent Home
Reagents Resource Hub
References
[1] National Health Service (NHS). Cardiovascular disease. [Online] September 17, 2018. [Cited: November 30, 2018.] https://www.nhs.uk/conditions/cardiovascular-disease/.
[2] National Institute for Health and Care Excellence (NICE). Cardiovascular disease risk assessment and prevention. [Online] no date. [Cited: November 30, 2018.] https://bnf.nice.org.uk/treatment-summary/cardiovascular-disease-risk-assessment-and-prevention.html.
[3] World Health Organization (WHO). Cardiovascular diseases (CVDs). [Online] May 17, 2017. [Cited: November 30, 2018.] http://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
[4] New Insight into Adiponectin Role in Obesity and Obesity-Related Diseases. Nigro, Ersilia, et al. Napoli : BioMed Research International, 2014, Vol. 2014.
[5] Navarro CO, Kurth MJ, Lamont JV, Menown IB, Ruddock MW, Fitzgerald SP et al. Diagnostic Performance of a Combination Biomarker Algorithm for Rule-Out of Acute Myocardial Infarction at Time of Presentation to the Emergency Department, Using Heart-Type Fatty Acid-Binding Protein and High-Sensitivity Troponin T tests. Journal of Clinical & Experimental Cardiology 2018, Vol. 9
[6] Role of homocysteine in the development of cardiovascular disease. Ganguly, P and Alam, SF. 6, Riyadh, Kingdom : Nutrition Journal, 2015, Vol. 14.
[7] Lipoprotein(a). von Eckardstein, Arnold. 20, s.l. : European Heart Journal, 2017, Vol. 38.
[8] Austin. MA, et at, “Low-density lipoprotein subclass patterns and risk of MI”. JAMA 260, 1917, 1988
[9] Bupa. Coronary Heart Disease. Bupa. [Online] Bupa Health. [Cited: November 30, 2018.] https://www.bupa.co.uk/health-information/heart-blood-circulation/coronary-heart-disease.
[10] Nall, Rachel. What are the different types of stroke? Healthline. [Online] Healthline, May 24, 2018. [Cited: November 2018, 2018.] https://www.healthline.com/health/stroke-types.
[11] Mayo Clinic. Mayo Clinic.org. Peripheral artery disease (PAD). [Online] Mayo Clinic. [Cited: November 30, 2018.] https://www.mayoclinic.org/diseases-conditions/peripheral-artery-disease/symptoms-causes/syc-20350557.
Superior Performance & Unique Tests
Superior Performance & Niche Reagents
Randox offer a range of high performance, unique and niche reagents that are designed to enhance your laboratory testing capabilities.
Our impressive portfolio of high performance & unique tests together with our standard assays sets us apart in the in vitro diagnostics market. Our superior performance reagents and methodologies deliver highly accurate and specific results, that can facilitate earlier diagnosis of disease states with confidence and precision.
Benefits of High Performance Reagents
Reduce Costs
We can help create cost-savings for your laboratory through excellent stability, eliminating the requirement for costly test re-runs. Our quality reagents also come in a range of different kit sizes to reduce waste and for your convenience.
Confidence in Patient Results
Our traceability of material and extremely tight manufacturing tolerances ensure uniformity across our reagent batches. All of our assays are validated against gold-standard methods.
Applications Available
Applications are available detailing instrument-specific settings for the convenient use of the Randox superior performance & unique assays on a wide variety of clinical chemistry analysers.
Superior Performance Offering
Randox offer an extensive range of 115 assays across routine and niche tests, and cover over 100 disease makers. Our high performance assays deliver superior methodologies, more accurate and specific results compared to traditional methods.
Reduce Labour
Reduce valuable time spent running tests. Randox reagents come in liquid ready-to-use formats and various kit sizes for convenient easy-fit. Barcode scanning capabilities for seamless programming.
Unique Offering
Our range of unique assays means that Randox are one of the only manufacturers to offer these tests in an automated biochemistry format.
The in vitro diagnostics market is continuously adapting to the changes in laboratory testing. Consequently, Randox have continued to reinvest in R&D to produce superior performance & unique tests offering laboratories choice, quality and innovation.
The Randox Lp(a) assay is calibrated in nmol/l and traceable to the WHO/IFCC reference material (IFCC SRM 2B) and provides an acceptable bias compared with the Northwest Lipid Metabolism Diabetes Research Laboratory (NLMDRKL) gold standard. A five-point calibrator with accuracy-based assigned target values (in nmol/l) is available, accurately reflecting the heterogeneity of the apo(a) isoforms.
The Randox bile acids test utilises an advanced enzyme cycling method which displays outstanding sensitivity and precision when compared to traditional enzymatic based tests. The Randox 5th Generation Bile Acids test is particularly useful in paediatrics where traditional bile acids tests are affected by haemolytic and lipaemic samples.
A superior assay from Randox, the vanadate oxidation method offers several advantages over the diazo method, including less interference by haemolysis and lipaemia, which is particularly evident for infant and neonatal populations.
The Randox Fructosamine assay utilises the enzymatic method which offers improved specificity and reliability compared to conventional NBT-based methods. The Randox enzymatic method does not suffer from non-specific interferences unlike other commercially available fructosamine assays.
Soluble transferrin receptor (sTfR) is a marker of iron status. In iron deficiency anaemia, sTfR levels are significantly increased, however remain normal in the anaemia of inflammation. Consequently, sTfR measurement is useful in the differential diagnosis of microcytic anaemia.
Email Us
Get in touch today at reagents@randox.com
Need Instructions?
Kit Inserts are available to download for free on our online portal.
Buy Online
Order your cardiology kits today by visiting our online store
Support World Kidney Day with Randox Renal Function Tests
World Kidney Day is a global campaign aimed at raising awareness of the importance of our kidneys to our overall health. It aims to reduce the frequency and impact of kidney disease and its associated health problems worldwide.
The main objectives of World Kidney Day are to educate all medical professionals about their key role in detecting and reducing the risk of Chronic Kidney Disease (CKD), particularly in high risk populations, and to stress the important role of local and national health authorities in controlling the CKD epidemic. On World Kidney Day all governments are encouraged to take action and invest in further kidney screening.
World Kidney Day highlights the need for more accurate kidney function testing for better diagnosis and monitoring of kidney function to assist in the development of appropriate treatment plans. As such, Randox have invested in the development of more sensitive and specific renal function tests such as cystatin C, which may be requested if kidney function is found to be borderline using the more routinely run creatinine test. Doctors may request cystatin C to check for early kidney disease and/or to monitor known impairment over time.
Cystatin C is a particularly useful marker of renal function in patients where creatinine measurements are not suitable e.g. individuals who are obese, malnourished, have liver cirrhosis or reduced muscle mass. Importantly, unlike creatinine, cystatin C does not have a ‘blind area’ – up to 50% of renal function can be lost before significant creatinine elevation occurs. Cystatin C is extremely sensitive to very small changes in GFR and is therefore capable of detecting early stage kidney dysfunction.
Both World Kidney Day and Randox are working towards improving healthcare worldwide. With a comprehensive panel of high performance reagents, Randox are helping with the detection and characterisation of renal function problems. With early diagnosis it will be possible to keep kidney problems from getting worse, therefore lowering the number of those diagnosed with CKD worldwide.
If you are a clinician or lab interested in running renal function assays, Randox offers a large range of high quality routine and niche assays including: Cystatin C, Creatinine Enzymatic and Jaffe, Microalbumin, Urinary Protein, Urea, Sodium, Potassium, Albumin, Ammonia, β2- Microglobulin, Calcium, Chloride, Glucose, HbA1c, IgG, LDH, Magnesium, Phosphorus (Inorganic), and Uric Acid. These can be run on most automated biochemistry analysers.
For more information, download our Reagents Brochure or email reagents@randox.com.