Introducing The Randox Lipids Panel
Cardiovascular disease (CVD) caused by atherosclerosis (arteriosclerosis) is the leading cause of morbidity and mortality in Western countries1. Atherosclerosis involves the hardening and narrowing of vessels in the systemic system. This process originates from the build-up of fatty deposits through a process known as atherogenesis. If the build-up increases, plaque rupturing may occur which may lead to myocardial infarction2.
The mission of the National Lipid Association (NLA) “is to enhance the practice of lipid management in clinical medicine”. NLA advocate advancing the current lipid testing profile. The current lipid panel consists of testing LDL cholesterol, HDL cholesterol and triglycerides, which only detects approximately 20% of all atherosclerotic cardiovascular disease (ASCVD) patients. Advanced lipid testing is recommended to optimise patient treatment3.
Current Challenges
75% of circulatory risk factors are preventable4
1 in 4 deaths in the US is attributed to heart disease6
6 million people in the UK suffer from narrowing of the heart arteries5
How Can Randox Help With The Current Challenges
As the current lipid panel consists of testing LDL cholesterol, HDL cholesterol and triglycerides, which only detects approximately 20% of all coronary artery disease (CAD) patients, advanced lipid testing is recommended to optimise patient treatment. The Randox lipid profile encompasses niche and superior performance assays for the detection of conventional risk factors, as well as emerging biomarkers associated with further risk.
Apolipoprotein C-III (Apo C-III)
A niche product from Randox, Apo C-III deficiency has shown to increase the rate of triglyceride clearance from plasma by up to 7 fold. Apo C-III levels have been reported higher in several conditions such as type 2 diabetes, hyperbilirubinemia and decreased thyroid function.
Apolipoprotein E (Apo E)
A niche product from Randox, Apo E has been found to have an association with neurodegenerative conditions such as Alzheimer’s Disease and Multiple Sclerosis. A deficiency in Apo E gives rise to high levels of serum cholesterol and triglycerides, leading to premature atherosclerosis
HDL3 Cholesterol (HDL3-C)
A niche product from Randox, HDL3-C, a subclass of HDL-C, has an inverse correlation with CVD risk. Several clinical studies indicate that measuring these HDL-C subclasses better reflects primary and secondary CHD risk than measurement of total HDL-C, making it a significant independent biomarker for better risk profiling when used together with other risk markers.
Lipoprotein (a) (Lp(a))
A unique product from Randox, Lp(a) has proven to have a causal role in the premature development of atherosclerosis and CVD as elevated Lp(a) levels associate robustly and specifically with increased CVD risk. The Randox Lp(a) assay is one of the only methodologies on the market that detects the non-variable part of the Lp(a) molecule and therefore suffers minimal size related bias.
Small-dense LDL Cholesterol (sdLDL-C)
A niche product from Randox, sdLDL-C, a subtype of LDL cholesterol, can more readily permeate the inner arterial wall. Research indicates that individuals with a predominance of sdLDL-C have a 3-fold increased risk of myocardial infarction.
Liquid ready-to-use assays
The Randox lipid assays are available in a liquid ready-to-use format for convenience and ease of use. (The Triglycerides kit is also available in a lyophilised format).
Wide measuring ranges
The Randox lipid assays can comfortably detect levels outside of the healthy range for the accurate detection of abnormal levels, offering peace of mind in patient samples.
Excellent correlation with standard methods
The Randox lipid assays display excellent correlations when compared against standard methods, offering trust and confidence in results.
Applications are available
Applications are available detailing instrument-specific settings for the convenient use of the Randox lipid assays on a wide range of clinical chemistry analysers.
Cardiovascular disease (CVD) refers to disease of the heart or blood vessels. Heart disease encompasses a number of diseases that affect the heart. In contrast, vascular disease encompasses a number of diseases that affect the blood vessels. Circulatory health problems are the result of vascular disease. Developing problems within the vascular system can go undetermined and in some patients the problem may only become apparent when they experience a heart attack or stroke 7.
Atherogenesis and Atherosclerosis
Atherogenesis is a circulatory disease whereby atheromas are formed (plaque build-up) within the artery. Plaque is a combination of cholesterol, fat, calcium, lipids and other substances within the blood stream. As time progresses, the plaque hardens, narrowing the arteries. This is known as atherosclerosis. Consequently, blood flow through the narrowed artery is reduced, limiting the supply of blood to vital organs and bodily tissues. As atherogenesis can affect any artery within the body, different diseases may develop based on the artery that is affected. Such diseases include: coronary heart/artery disease, carotid artery disease, peripheral artery disease and chronic kidney disease8.
Plaque Rupture
As atherogenesis and atherosclerosis causes plaque to build up and harden within the arteries precipitating thrombi, blood flow to the heart, brain, or the lower extremities is obstructed (depending on the artery affected). This can further develop into coronary heart/artery disease (heart), ischemic stroke (brain) or peripheral vascular disease (lower extremities). However, the most common and most discussed of these manifestations is coronary heart/artery disease9. These manifestations occur when the plaque ruptures. The risk of the plaque rupturing is determined by the type of plaque (composition) rather than the size of the plaque (volume) as only plaques that are rich in soft extracellular lipids are rupture-prone (vulnerable). Whilst most plaque ruptures are small causing an acute coronary event, the actual vulnerability of the plaque may change over time. Luckily, the vulnerable plaque components are most likely to regress with treatment10.
Myocardial Infarction
The processes of atherogenesis, atherosclerosis and plaque rupturing, if left undetected can a myocardial infarction (MI) or “heart attack” if the plaque build-up has occurred in the coronary artery11. MI occurs when the blood supply to heart is completely blocked by the formation of a clot or a blockage due to a loose piece of atheroma (plaque rupturing). If the blood supply to the heart is blocked the cells in the heart begin to die due to the lack of oxygen, causing chest pain (angina). The extent of the blockage and the amount of heart muscle affected will determine whether this malfunction will affect the hearts ability to pump blood12. The signs of atherogenesis, atherosclerosis and plaque rupturing can be subtle, and most heart attack victims may only feel symptoms in the days leading up to the attack. For 80% of people, the first sign of a heart attack is angina. Other symptoms to be aware of are shortness of breath, anxiety, sweating, light-headedness and temporary changes in vision 11.
Exercise
Regular exercise has a major effect on your circulation and cardiovascular health. Moderate levels of exercise can increase blood flow and reduce the risk of poor circulatory health conditions such as atherosclerosis. Exercise promotes good circulation as it strengthens the heart muscles, lowing the resting heart rate and preventing the build-up of plaque in the arteries. It is important for those with current circulation problems to be vigilant while exercising to ensure they are not over exerting themselves13.
Know your healthy fats
Diet changes are important for improving circulatory health. Eating a variety of foods such as lean meats, vegetables, fruits, legumes and whole grains will aid in lowering lipid levels and keep them low. It is recommended that more unsaturated fats are consumed in comparison to saturated fats, as saturated fats raise sdLDL-C levels which can lead to an increased risk of atherosclerosis. On the other hand, unsaturated fats such as monounsaturated or polyunsaturated fats may increase HDL levels and are known as being ‘heart-healthy’. It is recommended to find healthier alternatives for certain foods such as butter and oil14.
Stop Smoking
Smoking can cause circulatory problems in several ways. Most notably it can cause the carotid arteries (arteries which supply oxygen to the brain) to become filled with plaque. Also, smoking can cause PAD by reducing adequate blood supply to the limbs which can lead to leg pain and possibly amputation. Quitting smoking has been proven to have positive effects on circulation: just 20 minutes after a cigarette, blood pressure decreases and oxygen levels return to normal. Within 24 hours, the chance of a heart attack will have already decreased and after 48 hours, nerve endings deeded by the habit are expected to regenerate, with sense of taste and smell improving also. A year after quitting, the risk of coronary heart disease (CHD) will be halved. After 15 years, a quitter’s risk of CHD is now similar to that of a person who has never smoked14.
Related Products
Cardiology Testing Panel
Featured Reagent Home
Reagents Resource Hub
References
[1] Burnett, John R. Lipids, Lipoproteins, Atherosclerosis and Cardiovascular Disease. National Center for Biotechnology Information (NCBI). [Online] Clin Biochem Rev., 25 February 2004. [Cited: 3 December 2018.] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1853363/.
[2] Zimmermaann, Kim Ann. Circulatory Systenm: Facts, Function & Diseases. Live Science. [Online] 16 March 2018. [Cited: 3 December 2018.] https://www.livescience.com/22486-circulatory-system.html.
[3] National Lipid Association. National Lipid Association Releases Updated Recommendations on the Use of PCSK9 Inhibitors at the 15th Annual Scientific Session. [Online] no date. [Cited: 3 December 2018.] https://www.lipid.org/nla/national-lipid-association-releases-updated-recommendations-use-pcsk9-inhibitors-15th-annual.
[4] World Heart Federation. Driving Sustainable Action for Circulatory Health: Whitepaper for Circulatory Health. [Online] Global Coarlition for Circulatory Health, no date. [Cited: 30 November 2018.] https://www.world-heart-federation.org/wp-content/uploads/2018/11/White-Paper-for-Circulatory-Health.pdf.
[5] British Heart Foundation. Research into atherosclerosis: 4 scientists talk about their work. [Online] no date. [Cited: 30 November 2018.] https://www.bhf.org.uk/informationsupport/heart-matters-magazine/research/atherosclerosis..
[6] Centers for Disease Control and Prevention. Heart Disease Facts. [Online] 28 November 2017. [Cited: 4 December 2018.] https://www.cdc.gov/heartdisease/facts.htm.
[7] Cardiovascular Disease. NHS. [Online] NHS UK, September 15, 2018. [Cited: November 30, 2018.] https://www.nhs.uk/conditions/cardiovascular-disease/
[8] National Heart, Lunch, and Blood Institute. Atherosclerosis. [Online] no date. [Cited: 28 November 2018.] https://www.nhlbi.nih.gov/health-topics/atherosclerosis.
[9] Fog Bentzon, Jacob, et al. Mechanisms of Plaque Formation and Rupture. Circulation Research. [Online] 6 June 2014. [Cited: 29 November 2018.] https://www.ahajournals.org/doi/abs/10.1161/circresaha.114.302721.
[10] Falk, E. Why do plaques rupture? National Center for Biotechnology Information. [Online] Circulation, December 1992. [Cited: 29 November 2018.] https://www.ncbi.nlm.nih.gov/pubmed/1424049.
[11] MedBroadcast. Heart Attack (Myocardial Infarction, MI). [Online] no date. [Cited: 30 November 2018.] https://medbroadcast.com/condition/getcondition/heart-attack.
[12] Harvard Health Publications. Heart Attack (Myocardial Infarction. [Online] 10 September 2018. [Cited: 30 November 2018.] https://www.drugs.com/health-guide/heart-attack-myocardial-infarction.html.
[13] Bergeson Becco, Laine. How Exercise Affects Circulation (and Vice Versa). Experience Life. [Online] June 2017. [Cited: 4 December 2018.] https://experiencelife.com/article/how-exercise-affects-circulation-and-vice-versa/.
[14] Mayo Clinic. Top 5 lifestykle changes to improve your cholesterol. [Online] 11 August 2018. [Cited: 4 December 2018.] https://www.mayoclinic.org/diseases-conditions/high-blood-cholesterol/in-depth/reduce-cholesterol/art-20045935.