New UK-developed test can help predict who will develop type 1 diabetes and unlock treatment
New UK-developed test can help predict who will develop type 1 diabetes and unlock treatment

- New drugs are emerging for type 1 diabetes (T1D), but they can only be given before a person has a clinical diagnosis
- Now countries across the world are looking at introducing the first global screening programmes to identify who is at high risk of developing the disease, to prescribe before it is too late
- A new biochip by Randox, developed with the University of Exeter, is the first in the world to use genetics to quickly identify who is at high risk of developing T1D, filtering who should go forward for further testing and accelerating access to treatment where needed.
A new test that uses genetics to help predict who is at high risk of developing type 1 diabetes is now publicly available for the first time, following research that aims to help people across the globe access new drugs that can modify the disease.
The test could help develop new screening programmes for type 1 diabetes, as new drugs emerge which must be prescribed at early stages to be effective. The new test will also help determine type 1 from type 2 diabetes, further improving clinical decision making and treatment.
The test, developed by UK diagnostics company Randox using research from the University of Exeter, could help introduce public health screening in the UK and across the world, supporting those with a high genetic risk of developing type 1 diabetes. Now, the test has received UK regulatory approval ā the first such approval issued globally. This means it will be available to consumers in the UK, through Randox Health clinics, and can be ordered online for sample collection at home and returned to Randoxās laboratories for testing.
Type 1 diabetes has a significant inherited risk. The new test is conducted on a Randox biochip which can simultaneously identify up to 10 genetic variants linked to risk for type 1 diabetes. An algorithm is then applied to assess the risk associated with the identified variants for each individual, to calculate a genetic risk score. Previous trials have shown that genetic risk scores are particularly effective in predicting risk for type 1 diabetes. This score will help identify people who donāt have diabetes but are at high risk of developing the disease in the future and can be referred for autoantibody testing to give a definitive diagnosis. The Randox biochip can also be used after diagnosis, to help identify what type of diabetes a person has, which is crucial to ensuring they get the best possible treatment and care.
Identifying those at high risk is particularly topical, as new drugs emerge that can reduce the impact of type 1 diabetes ā and they can only be given at the earliest stages, before a clinical diagnosis is given. In November 2022, the US Food and Drug Administration (FDA) approved the use of teplizumab ā the first disease-modifying treatment for type 1 diabetes. It can only be prescribed pre diagnosis, yet there is currently no screening programme anywhere in the world to identify early pre-clinical type 1 diabetes. The drug is not yet approved for use in the UK, however, health services globally are now considering how best to introduce public health screening programmes. Diabetes clinician Professor Richard Oram, of the University of Exeter, developed the genetic risk score based on a decade of research, and has worked with Randox on developing the new biochip. He said: āThe world is waking up to the value of screening programmes for type 1 diabetes because of new drugs which must be given at the earliest stages of disease. Our new biochip is a pioneering example of how understanding a personās background genetic risk can help identify those at highest risk, ensuring they have further antibody screening so we can efficiently identify type 1 diabetes early enough for treatment to be effective. The Randox biochip could aid in speeding up decisions
around who should be monitored and tested further, making public health screening cost effective and improving lives by increasing access to treatment.ā
Type 1 diabetes affects more than eight million people worldwide, and numbers are projected to rise significantly. The disease causes the bodyās own immune system to attack the beta cells which regulate blood sugar. Although the disease is primarily caused by genetics, only around one in ten people with type 1 diabetes have a family member affected, making the other nine in ten difficult to identify. Currently, they are often referred for autoantibody tests when symptoms start to show ā but that can be too late to mean they are eligible for treatment.
The new fingernail-sized biochip works by applying DNA extracted from a patientās blood sample to the biochip surface, upon which copies of the high-risk type 1 diabetes genetic variants are fixed. If a match occurs, the patientās DNA will bind to the fixed risk variants and emit light. The pattern of positive genetic variants indicates genetic risk and an algorithm is then applied, factoring the significance of each gene variant. The higher the genetic score, the greater the risk that the individual will develop the disease. Those at high risk can then be monitored and put forward for autoantibody screening, while those at low risk need not be screened, which saves money.
Dr Lucy Chambers, Head of Research Communications at Diabetes UK, said: āWeāre delighted to see that research supported by Diabetes UK has informed the development of an innovative new tool to find people at high risk of type 1 diabetes. New treatments to prevent or delay type 1 are on the horizon, and their success hinges on establishing effective screening methods to pinpoint those at higher risk. We are continuing to fund research into type 1 screening and are pleased to see new innovations that have the potential to improve lives.ā
Hilary Nathan, Director of Policy and Communications at JDRF UK: āFor too long, type 1 diabetes has lain silent and undetected to subsequently devastate lives and cause chaos from the first days of diagnosis. This new biochip from Randox and the University of Exeter is exciting, as the test could provide a new way to predict who is at risk from developing type 1. This knowledge then unlocks the opportunity to provide education and intervene at the earliest stages, enabling us to reduce the number of people being diagnosed with diabetic ketoacidosis, which can have traumatic and potentially fatal consequences. We are also on the cusp of a wave of transformative treatments, which can delay the onset of type 1, offering people invaluable years of life free from its burdens.”
Dr Peter FitzGerald MD of Randox said: āWeāre delighted to have worked with the University of Exeter on this project to provide a screening tool to assess the genetic risk of type 1 diabetes which, aligned with autoantibody testing, can greatly improve diagnosis, patient care and access to therapeutics. As a result of our regulatory UKCA approval we will, as a world first, be providing this test through our Randox Health clinics, including within certain John Lewis stores, to private individuals in the UK from7th March. We are also releasing the test via a home-based sample self-collection kit. This test is a game-changer in the diagnosis and treatment of type 1 diabetes and we look forward to deploying the test to support public and private healthcare providers globally.”
The benefits of understanding your health status

Randox Health believe in takin a proactive approach to health – making it their mission to deliver accurate and informative preventative health directly to consumers, all the while helping to relieve some of the strain felt by the health service.
More than 4.3 million people in the UK now live with diabetes. Additionally 850,000 people could be living with diabetes who are yet to be diagnoses. (Diabetes UK)
The Office for National Statistics also estimated that one in nine adults – equating to more than five million people – have non-diabetic hyperglycemia, or ‘pre-diabetes’. Making it one of the most common conditions that people live with – most people with diabetes, with the right medication and management, can live completely unencumbered lives and new technologies are making it even simpler. However, if the right care is not provided, diabetes can increase your risk of several serious complications.
Journalist, Matt Rudd, with a group of colleagues from The Times, UK, recently undertook the Randox Health Vital test – which allows you to understand your health baseline by reviewing vital health areas that could increase your risk of heart attack, stroke, and Type 2 diabetes.
Matt described the test as ‘making sense’, “…even though most cases (of type 2 diabetes) are linked to poor diet and obesity those people in the undiagnosed category are likely to be slimmer, younger and in good general health.”
Understanding your health data is vital in helping you to not only feel your best but can also help to prevent illness and reduce your risk of common conditions. The Randox Health Vital health check provides insight into four essential health areas and provides key data empowering you to take control of your health:
- Personal measurements including blood pressure and body composition are measured, If left unmanaged, high blood pressure can increase your risk of heart attack or stroke.
- Heart Health – find out if your levels of both good cholesterol (HDL cholesterol, triglycerides and total cholesterol/ HDL Ratio – higher than normal levels of LDL cholesterol may make you more likely to have heart problems or stroke.)
- Diabetes Health – HbA1c levels are measured to provide an overall picture of average blood sugar levels over a period of weeks/ months. HbA1c levels can be used to indicate prediabetes or diabetes.
- Full blood count.
The easy-to-interpret report from this Health test will provide a breakdown of results, what they mean and next steps.
By finding out if you are at increased risk of conditions such as those that the Vital package tests for, you can choose to make lifestyle changes to help improve your risk of these potentially devastating conditions.
Medical director for Randox Health, Dr. Gary Smyth provided the following comments for the Times article.
“I believe we should be screening more widely. As the adage goes, prevention is better than a cure. We’re not talking about eradicating type 2 diabetes, but we know it’s am entirely preventable disease with the correct lifestyle choices. It’s depression that there isn’t a system to test more people at a younger age.”
To read the full Times article: https://www.thetimes.co.uk/article/35d441ef-49fa-4b1a-978b-13792123cde9?shareToken=6f1dbe1f2bf3e591663f0c240d92c9ae
A Peculiar Problem in Pregnancy and the Placenta
Complications and Diagnosis of Pre-eclampsia
When we consider our most important organ its intuitive to choose the heart, the lungs or even the kidneys. However, there’s another without which none of us would be here to have the discussion. This ephemeral organ provides us with the nutrients necessary for development, removes malevolent agents, provides our initial immunity and much more, before being cast off as we enter the world. We are, of course, talking about the placenta. Indeed, all our organs work together to support life and it’s arbitrary to imbue one with more importance than the others. Nevertheless, as our first organ, the significance of the placenta is irrefutable.
Placental dysfunction, along with several other factors, is known to contribute to the development of pre-eclampsia – a complex, multisystem hypertensive disorder of pregnancy. While the aetiology of pre-eclampsia remains largely unknown, the grave complications associated with it have driven development of novel methods for predicting its onset.
Pre-eclampsia and Epidemiology
Pre-eclampsia is traditionally defined as new onset hypertension and proteinuria in pregnancy1, however, the International Federation of Gynaecology and Obstetrics’ (FIGO) clinical definition describes it as sudden onset hypertension (>20 weeks of gestation) and at least one of the following: proteinuria, maternal organ dysfunction or uteroplacental dysfunction2. It is responsible for an estimated 70’000 maternal deaths, and 500’000 foetal deaths globally3. Pre-eclampsia affects around 4% of pregnancies in the US and is more common in low-to-middle income countries (LMICs), displaying an overall pooled incidence of 13% in a cohort from sub-Saharan Africa4. The risk factors for pre-eclampsia are shown in the graphic below.

Pre-eclampsia is associated with increased morbidity and mortality worldwide. In the US, pre-eclampsia is the foremost cause of maternal death, severe maternal morbidity, maternal intensive care admissions and prematurity5.
Classical classification of pre-eclampsia included early-onset (<34 weeks gestation) and late-onset (>34 weeks gestation). However, this classification lacks clinical utility as it does not accurately illustrate maternal or foetal prognosis. Therefore, the International Society for the study of Hypertension in Pregnancy (ISSHP) and contemporary studies prefer to classify pre-eclampsia as preterm (delivery <37 weeks of gestation), term (delivery ≥37 weeks of gestation) and postpartum pre-eclampsia (after delivery).

Complications
Pre-eclampsia has been associated with acute and chronic complications for both mother and child. Worldwide risk of maternal and foetal morbidity displays adjusted odds ratios of 3.73 and 3.12, respectively (pre-eclampsia vs non pre-eclampsia)6.
Acute Maternal Complications
A range of neurological complications are associated with pre-eclampsia. The most obvious is eclampsia, defined as seizures in pregnant women commonly from 20 weeks of gestation or after birth7. Eclampsia has two proposed mechanisms: abnormal placentation reduces blood supply and causes oxidative stress, leading to endothelial damage; and elevated blood pressure in pre-eclampsia disrupts cerebral vasculature, causing hypoperfusion and damage8. In high-income countries (HICs), most women make a full recovery, however, more severe cases of eclampsia can result in permanent disability or brain damage7.
Stroke is a significant complication of pre-eclampsia, constituting 36% of strokes related to pregnancy9. The hypertension characteristic of pre-eclampsia can weaken the walls of blood vessels causing subarachnoid or intracerebral haemorrhage resulting in haemorrhagic stroke. Ischaemic stroke is also of concern due to blood clotting complications which will be discussed later.
Additonal neurological complications include visual scotoma, cortical blindness, cerebral venous sinus thrombosis, cerebral vasoconstriction syndrome and posterior reversible encephalopathic syndrome (PRES). Notably, the last three in this list frequently manifest postpartum without warning6.
HELLP (Haemolysis, Elevated Liver enzymes and Low Platelets) syndrome is a liver and blood clotting disorder and life-threatening complication of pre-eclampsia. HELLP syndrome most commonly presents immediately postpartum but can manifest any time after 20 weeks of gestation7. Microangiopathy, or small blood vessel disorder, leads to ischaemia and a subsequent increase in oxidative stress and inflammation, causing an increase in liver enzymes and participates in the initiation of HELLP. Thrombocytopenia, or platelet deficiency, is considered a product of platelet depletion resulting from heightened platelet activation triggered by widespread endothelial damage6.
Another blood clotting condition associated with pre-eclampsia is Disseminated intravascular coagulation (DIC)7, described as the dysfunction of the maternal blood clotting system resulting in multiple organ dysfunction syndrome10. DIC can cause excessive bleeding due to lack of clotting proteins, or the formation of clots due to overactive clotting proteins, ultimately causing organ damage10.
As described earlier, proteinuria is included in the diagnostic criteria for pre-eclampsia, suggesting involvement of the kidneys. This is caused by high concentrations of soluble FMS like Tyrosine kinase 1 (sFLT-1), a placental angiogenic factor, which inhibits proteins of the podocyte slit diaphragm6; the machinery involved in preventing the leakage of proteins into the urine11. Reduced levels of Vascular Endothelial Growth Factor (VEGF) and Placental Growth Factor (PlGF) stimulates Endothelin 1 expression6, known to promote podocyte detachment, further contributing to proteinuria12.
Finally, Pulmonary oedema, excessive fluid accumulation in the lungs, is an acute and life-threatening complication associated with pre-eclampsia, the likelihood of which is increased via administration of antihypertensive medications6.
Acute Neonatal Complications
There are several documented complications affecting the baby of a pre-eclamptic mother. Firstly, Intrauterine growth restriction (IUGR) can result in underdevelopment of the foetus because of deficient transfer of oxygen and other nutrients from mother to child13. This can result in low birth weight, particularly when pre-eclampsia occurs prior to 37 weeks of gestation7. In pre-eclampsia with severe symptoms, delivery frequently occurs prematurely, either spontaneously or through induction. Preterm delivery can result in complications such as neonatal respiratory distress syndrome and neonates often require ICU admission7. Additionally, there is increased risk of stillbirth in pre-eclamptic pregnancies with relative risk shown to be 1.45 (95% Cl 1.20-1.76)14. Other complications documented in neonates born through pre-eclamptic pregnancies include neonatal thrombocytopenia, bronchopulmonary dysplasia, and a range of neurodevelopment outcomes15.
Long-term Complications
The only known cure for pre-eclampsia is delivery. However, the complications for both mother and child can last long after even an uncomplicated delivery. After a pre-eclamptic pregnancy, women are increased risk of end stage renal disease (4.7-fold), stroke (4-fold) and vascular dementia (3-fold) later in life5. Women are also at increased risk of other cardiovascular disease (CVD) including chronic hypertension, coronary artery disease, congestive heart failure5, and ischaemic heart disease13. In offspring, IUGR increases the risk of development of hypertension and other CVD13. Finally, offspring have been shown to be at higher risk of increased body mass index, changes in neuroanatomy, reductions in cognitive function, and hormonal abnormalities13.

sFLT-1/PlGF ratio
The pathophysiology of pre-eclampsia is complex and enigmatic. However, placental dysfunction is known to be a factor in pre-eclampsia development. The placental-related angiogenic factors, sFLT-1 (anti-angiogenic) and PlGF (pro-angiogenic), have been implicated in this development. This ratio provides a useful measure of placental dysfunction as a sharp increase in sFLT-1 and decrease in PlGF has been shown approximately 5 weeks before onset of pre-eclampsia16.
Until recently, diagnosis of pre-eclampsia was one of clinical manifestation. However, studies such as PROGNOSIS17 and PROGNOSIS Asia18, along with others19,20, have shown strong utility of this ratio. The PROGNOSIS study showed that a ratio cutoff of ≥38 was useful for ruling out pre-eclampsia within 1 week with a negative predictive value (NPV) of 99.3% or 4 weeks with a positive predictive value (PPV) of 36.7%17. The definitions of pre-eclampsia used by ICCHP and American College of Obstetricians and Gynaecologists (ACOG) have a PPV of around 20%, but when used in combination with the sFLT-1/PlGF ratio, the PPV is enhanced to 65.5% for ruling in pre-eclampsia within 4 weeks.21.
Similar results have been shown in an Asian cohort in the PROGNOSIS Asia Study. Using the same cutoff value, this study reported an NPV of 98.9%18. Furthermore, in a sub analysis of this cohort that looked at Japanese participants, a cutoff of ≥38 displayed an NPV of 100% for ruling out pre-eclampsia within 1 week and a PPV of 32.4% for ruling in within 4 weeks22.
Accurate Identification is Essential
Like all clinical assays, those used to determine the sFLT-1/PlGF ratio are subject to rigorous quality control, essential to ensure accurate results and diagnosis. The complications of pre-eclampsia are severe and often life-threating for both mother and child. Early and accurate identification is imperative for optimal monitoring, management, and timely interventions to reduce the risk of the grave consequences associated with pre-eclampsia.
The utility of the sFLT-1/PlGF ratio has been shown over various large cohorts and provides improved identification when used in combination with established clinical definitions. While the enigma of pre-eclampsia persists, the dedication of the scientific community to unravel its complexities ensures a future where expectant mothers may benefit from more effective and tailored strategies to mitigate the risks associated with this puzzling condition. Continued research endeavours will undoubtedly shape the landscape of maternal-foetal medicine, fostering advancements that hold the promise of improved outcomes for both mothers and their unborn children.
At Randox Quality Control, we’ve introduced our Pre-eclampsia Control to the Acusera IQC range for use with in vitro diagnostic assays for the quantitative determination of PlGF and sFlt-1 in human serum and plasma.
Our true third-party Pre-eclampsia control comes with clinically relevant, assayed target values, is liquid-frozen for user convenience, utilises a human-based, commutable matrix, and has a 30-day open vial stability.
For more information on this, or any of our other controls, browse our brochure, or reach out to us today at marketing@randox.com for more information.
References
- American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy. Hypertension in Pregnancy. Obstetrics & Gynecology. 2013;122(5):1122-1131. doi:10.1097/01.AOG.0000437382.03963.88
- Poon LC, Shennan A, Hyett JA, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre‐eclampsia: A pragmatic guide for first‐trimester screening and prevention. International Journal of Gynecology & Obstetrics. 2019;145(S1):1-33. doi:10.1002/ijgo.12802
- Karrar SA, Hong PL. Preeclampsia. StatPearls Publishing; 2023.
- Jikamo B, Adefris M, Azale T, Alemu K. Incidence, trends and risk factors of preeclampsia in sub-Saharan Africa: a systematic review and meta-analysis. PAMJ – One Health. 2023;11. doi:10.11604/pamj-oh.2023.11.1.39297
- Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia. Circ Res. 2019;124(7):1094-1112. doi:10.1161/CIRCRESAHA.118.313276
- Dimitriadis E, Rolnik DL, Zhou W, et al. Pre-eclampsia. Nat Rev Dis Primers. 2023;9(1):8. doi:10.1038/s41572-023-00417-6
- NHS. Pre-eclampsia. Health A to Z. Published September 28, 2021. Accessed January 3, 2024. https://www.nhs.uk/conditions/pre-eclampsia/complications/
- Magley M, Hinson MR. Eclampsia. StatPearls Publishing; 2023.
- Crovetto F, Somigliana E, Peguero A, Figueras F. Stroke during pregnancy and pre-eclampsia. Curr Opin Obstet Gynecol. 2013;25(6):425-432. doi:10.1097/GCO.0000000000000024
- Costello RA, Nehring SM. Disseminated Intravascular Coagulation. StatPearls Publishing; 2023.
- Kawachi H, Fukusumi Y. New insight into podocyte slit diaphragm, a therapeutic target of proteinuria. Clin Exp Nephrol. 2020;24(3):193-204. doi:10.1007/s10157-020-01854-3
- Trimarchi H. Mechanisms of Podocyte Detachment, Podocyturia, and Risk of Progression of Glomerulopathies. Kidney Dis (Basel). 2020;6(5):324-329. doi:10.1159/000507997
- Turbeville HR, Sasser JM. Preeclampsia beyond pregnancy: long-term consequences for mother and child. American Journal of Physiology-Renal Physiology. 2020;318(6):F1315-F1326. doi:10.1152/ajprenal.00071.2020
- Harmon QE, Huang L, Umbach DM, et al. Risk of Fetal Death With Preeclampsia. Obstetrics & Gynecology. 2015;125(3):628-635. doi:10.1097/AOG.0000000000000696
- Backes CH, Markham K, Moorehead P, Cordero L, Nankervis CA, Giannone PJ. Maternal Preeclampsia and Neonatal Outcomes. J Pregnancy. 2011;2011:1-7. doi:10.1155/2011/214365
- Verlohren S, Galindo A, Schlembach D, et al. An automated method for the determination of the sFlt-1/PIGF ratio in the assessment of preeclampsia. Am J Obstet Gynecol. 2010;202(2):161.e1-161.e11. doi:10.1016/j.ajog.2009.09.016
- Zeisler H, Llurba E, Chantraine F, et al. Predictive Value of the sFlt-1:PlGF Ratio in Women with Suspected Preeclampsia. New England Journal of Medicine. 2016;374(1):13-22. doi:10.1056/NEJMoa1414838
- Bian X, Biswas A, Huang X, et al. Short-Term Prediction of Adverse Outcomes Using the sFlt-1 (Soluble fms-Like Tyrosine Kinase 1)/PlGF (Placental Growth Factor) Ratio in Asian Women With Suspected Preeclampsia. Hypertension. 2019;74(1):164-172. doi:10.1161/HYPERTENSIONAHA.119.12760
- Hughes RCE, Phillips I, Florkowski CM, Gullam J. The predictive value of the sFlt‐1/PlGF ratio in suspected preeclampsia in a New Zealand population: A prospective cohort study. Australian and New Zealand Journal of Obstetrics and Gynaecology. 2023;63(1):34-41. doi:10.1111/ajo.13549
- Nikuei P, Rajaei M, Roozbeh N, et al. Diagnostic accuracy of sFlt1/PlGF ratio as a marker for preeclampsia. BMC Pregnancy Childbirth. 2020;20(1):80. doi:10.1186/s12884-020-2744-2
- Verlohren S, Brennecke SP, Galindo A, et al. Clinical interpretation and implementation of the sFlt-1/PlGF ratio in the prediction, diagnosis and management of preeclampsia. Pregnancy Hypertens. 2022;27:42-50. doi:10.1016/j.preghy.2021.12.003
- Ohkuchi A, Saito S, Yamamoto T, et al. Short-term prediction of preeclampsia using the sFlt-1/PlGF ratio: a subanalysis of pregnant Japanese women from the PROGNOSIS Asia study. Hypertension Research. 2021;44(7):813-821. doi:10.1038/s41440-021-00629-x
Meeting Accreditation Guidelines with Acusera 24.7
At Randox Quality Control, we are never finished shouting about how great our interlaboratory comparison and peer group reporting software is. If you’ve had a look yourself, you’ll know exactly why. Acusera 24.7 is full of fetching, interactive charts, and useful, detailed reports, including measurement uncertainty, to help you streamline your QC procedure.
But Acusera 24.7 is so much more than this. Our team are constantly looking for innovative ways to update and improve our live, cloud-based software. Much of this comes from talking to our subscribers and finding out what they want and how they want to do it. Our team also happens to include some serious accreditation enthusiasts. So, we decided to put their passion to work. We’re regularly coming up with new measures to make meeting the guidelines set out by various accreditation bodies, including ISO15189, as simple for you as we can.
In this article, we’ll look at some of the accreditation requirements and the features we’ve included in Acusera 24.7 to simplify the process for you.
QC management tools
Its one thing to look at the features of Acusera 24.7, but what do the various guidelines have to say about QC management tools? Let’s look at some of the major accreditation literature.
ISO15189:2022
The new version of ISO15189 includes updates which aim to place more emphasis on risk management and mitigating risk to the patient. Here’s what the 2022 version has to say about QC management tools:
The Clinical Laboratory Improvement Amendments 1988 (CLIA)
CLIA ’88 regulations are federal standards applicable to all U.S. facilities or sites that test human specimens for health assessment or to diagnose, prevent, or treat disease. These regulations state the following related to QC management:
COLA Accreditation
The Commission on Office Laboratory Accreditation (COLA) is another recognised laboratory accreditation in the U.S. and is a third-party accreditation organisation that ensures laboratories comply with federal regulations, including those set by CLIA. I’m sure you’re catching the trend here:
Meeting accreditation with Acusera 24.7
Acusera 24.7 offers a flexible approach to help laboratories meet all the QC accreditation requirements detailed above, including CLIA, COLA, CAP, and ISO15189.
Our user-friendly, cloud-based software allows users to effortless run statistical analysis including Coefficient of Variation Index (CVI), Standard Deviation Index (SDI), % Bias, Total Error, Sigma Metrics and more! Find out more about how we can aid you in your statistical analysis in our blog, Advanced Statistics with Acusera 24.7.
Acusera 24.7 can also create fully interactive Levey-Jennings charts, and a selection of histograms to provide a wide range of options for the graphical representation of your data. The interactive features of our charts allow you to record events such as lot changes and calibration events directly on to the chart, helping you achieve not just accreditation, but a better understanding of what is going on in your laboratory. You can read more about our charts and the insights you can gain from them at our blog, Charting the course to laboratory excellence.
Acusera 24.7 can also provide you with a variety of reports to help you effortlessly achieve accreditation. From our Statistical Analysis and Exception reports to our Personalised Performance Summary Reports, we can help your laboratory to efficiently identify and document trends or shifts in performance. You can read all about our reports in our blog, Effortless Data Management: Acusera 24.7 Reports.
Measurement Uncertainty
Anyone involved in laboratory quality control will be aware of measurement uncertainty (MU), although that doesn’t mean everyone understands this tricky requirement. MU is defined as a parameter associated with the result of a measurement that characterises the dispersion of values that could reasonably be attributed to the measured quantity.
In other words, MU provides medical laboratories with an estimate of the overall variability in the values they report. The goal of MU is to quantify the doubt or range of possible values around the measurement result, helping to provide an understanding of the reliability and limitations of measurements. This helps ensure measured results are useful and not wildly inaccurate, allows meaningful comparisons with medical decision limits and previous results of the same kind in the same individual and finally, it’s a requirement of ISO15189:2022:
Calculating MU is no simple task and not one that can even be attempted without in depth know-how. These calculations can take a single member of staff 2 full working days to complete. That’s a lot of time away from their normal duties, especially if MU is to be reviewed regularly, as per ISO15189:2022.
Lucky for you, Acusera 24.7 can calculate you MU in seconds, rather than days, and provide you with a report. This report can be shown to your accreditation surveyor, and you can consider the MU box ticked. You can read more about Acusera 24.7 and MU in our Advanced Statistics blog, or in our educational guide How to Measure Uncertainty.
Peer Group Reporting
The peer group reporting features of Acusera 24.7 are much more than just an added extra. Peer group reporting can help speed up the troubleshooting process, allowing you to determine whether an issue you are seeing is unique to you, or evident in the QC data of your peers. It can also provide you with more confidence in assigned target values and help make significant savings by improving your analytical performance, and therefore, your EQA performance.
A peer group reporting programme can also help meet regulatory requirements, like ISO15189:2022:
So, if you’re struggling to find a suitable EQA programme for your analytes, you might just be able to meet your accreditation with the peer group reporting features included in Acusera 24.7.
We’ve only begun to cover the features of this intuitive and efficient software. If you still aren’t convinced that Acusera 24.7 is right for QC data management in your laboratory, reach out to us today at marketing@randox.com. We’re always delighted to hear from you, and we’ll be happy to discuss any of the features of Acusera 24.7, or any reservations you may have.
Our customers can’t believe the gulf in class between Acusera 24.7 and other QC data management programmes.
Don’t get left behind.
Reach out to us today!
John Lewis offering in-store blood tests that could help drive down NHS waiting lists.
Retail giant John Lewis is to offer customers in-store blood tests in an unprecedented rollout across stores that could help drive down NHS waiting lists. The company has partnered with diagnostics firm Randox in a novel programme which will offer customers health checks, including those for certain cancers, diabetes and heart disease.
It is believed to be the first time blood tests are offered in department stores and follows the success of a pilot scheme last winter.
The news comes as Randox launches a suite of new blood tests which it says can pick up markers for some cancers at an early stage.
Randox has been in talks with senior NHS officials urging them to adopt its pioneering technology that identify abnormalities using a special microchip.
It believes its novel ālab on a chipā tests for prostate, bladder and gastrointestinal cancers could cut the NHS waiting list by reducing the number of patients having to undergo invasive and sometimes painful diagnostic tests. This could include cystoscopies – the procedure that King Charles was likely to have undergone as part of investigations into his prostate condition.
NHS officials have been given data showing up to 2.2 million people could be lifted off the waiting list and Ā£3 billion a year saved if the Randox blood cancer tests were routinely used in the NHS. Ministers are said to be examining the findings.
Checks for vitamin and mineral deficiencies, fertility and hormonal health as well as genetic testing for disease are also being offered.
Blood samples are sent to labs and results are sent back to clients who are able to book post-report consultations.
Naomi Simcock, Executive Director, John Lewis, said customers are āincreasingly seeking personalised, preventative health and wellbeing care.ā
She added: āOur stores can play an important role by making vital services like healthcare more convenient and accessible.ā
Dr Peter FitzGerald, Managing Director of Randox Health said: āOur comprehensive testing packages provide the foundation for individuals to take greater control of their health and optimise the potential to live well for longer. Randoxās presence in John Lewis stores will increasingly improve accessibility to leading healthcare prevention and wellbeing.”
A government spokesman said: āWe have already made available Ā£2.3 billion in capital investment over three years to transform diagnostic services, including improving digital diagnostic capabilities, and we have opened 153 community diagnostic centres, delivering more than six million additional scans to date.
āThe NHS carefully considers any treatment or procedure proven to improve or speed up diagnosis.”
Words by Lucy Johnston, Health and Social Affairs Editor of the Sunday ExpressĀ
International Day of Women and Girls in Science 2024
For the 9th consecutive year, the field of science has taken this day to celebrate women in the STEM industries and their achievements. The representation of women in STEM is climbing, however it remains low, with estimates claiming women make up only around 26% of the workforce. By celebrating the accomplishments of women in these fields, we hope to encourage more girls to enter the world of science and engineering and challenge the adversity women in STEM all too often face.
In honour of International Day of Women and Girls in Science 2024, we’ve looked at some of the most important achievements in the life sciences. Some of the names you’ll be familiar with, others may be new. We’ll travel to Ancient Greece where we will learn about the first female science writer and surgeon, before coming back to today to recognise some of the most groundbreaking innovations in medicine. For far too long the door to a career in the life sciences has been all but closed for women, as you will discover in this article. Yet some of the discoveries and triumphs over adversity we’ll look at are arguably some of the most important achieved by humanity.
Metrodora
In Ancient Greece, it was believed that science was derived directly from the gods. This meant, like other divine disciplines, women were not allowed to practice medicine. However, such a technicality did not stop our first heroine of science. Before her exploits in Greece, Metrodora was likely born and educated in Egypt where men and woman were equals, unlike much of the ancient world. In fact, some believe Metrodora to be an alias of the famous Cleopatra VII, Queen of Egypt. There is some debate about when Metrodora lived; some say between 200-400 CE, others claim it was more likely to be during the 7th century CE. The name Metrodora is particularly fitting for a woman of her accolades. In Greek, metro can be translated as womb, and dora means gift.
Metrodora was the author of a textbook, making her the first female science writer, spanning 2 volumes and 108 chapters entitled On the Disease and Cures of Women, in which she describes in detail her theories and findings on the topics of female health and the reproductive system. She is thought to have devised treatments for sterility, infections of the female reproductive system, menorrhagia (heavy periods) as well as a method for determining sexual abuse in women. Not to be limited by writing and medicine, Metrodora was also a surgeon, cited as removing dead embryos to save the lives of mothers who miscarried, removing cancers of the breast and uterus and was even among the first to perform cosmetic surgery. Metrodora reconciled this with her Hippocratic duty to help women who had been abused through aesthetic facial and breast reconstruction and the restructuring of the hymen of women who had suffered this fate.
Her pioneering work, however, was quite nearly forgotten forever as she was largely overlooked by her contemporaries. But thankfully, some of her texts are preserved in the Laurentian Library in Florence. Metrodora’s commitment to medicine and female health is summed up perfectly in the opening words of her text, “some of them are intricate to treat and others are fatal, by these notes we will recognise each one”.

Elizabeth Blackwell (1821-1910)
Elizabeth Blackwell was always destined to shake the status quo. Her father, Samuel, was a Quaker and an antislavery activist. Among her siblings are Henry, an abolitionist and women’s suffrage supporter; her sister, Emily, who followed Elizabeth into medicine; and her sister-in-law, Antoinette Brown Blackwell, who was the first female minister in mainstream Protestantism.
She was inspired into a life of medicine after a close friend had confessed embarrassment of her treatment by male doctors and suggested she’d have been more comfortable if attended to by a female physician. After a series of rejections from numerous medical schools, Elizabeth was finally accepted to Geneva College, New York. However, this acceptance was intended as a practical joke. Not to be discouraged, Elizabeth proved them all wrong, graduating top of her class in 1849 and becoming the first woman to graduate medical school. Dr Blackwell then practiced in London and Paris and was one of the first advocates for the importance of hygiene in medicine, noting that male doctors frequently failed to wash their hands, which led to the spread of epidemics.
In 1851, Elizabeth made the trip back to New York where discrimination was still rife. Once again, her persistence led to the opening of the New York Infirmary for Women and Children in 1857 with Dr Emily Blackwell and Dr Marie Zakrzewska. This institution was a haven for women who needed medical treatment but were often too poor to afford it, and for female physicians struggling to get work in the field. Among her laurels, she played a role in the inception of the National Health Society, established in 1871, which aimed to spread knowledge of public health, and is considered the predecessor to the National Health Service.

Marie Curie (1867-1934)
Marie Curie is among the most famous of the women in science, so we won’t spend too much time on her life and accomplishments here. However, its impossible to have the discussion without mentioning her invaluable contribution to science. In often poor laboratory conditions with worse equipment, she, and her husband Pierre Curie, made some pivotal discoveries including the isolation of polonium and radium. Marie Curie developed techniques to separate radium from radioactive residues which allowed it to be studied extensively and eventually, its use as a therapeutic agent.
In 1903, Marie and Pierre Curie were awarded half of the Nobel Prize for Physics for their work on spontaneous radiation. Then, in 1911, Marie Curie was given a second Nobel Prize, this one for chemistry, for her work on radioactivity. In recognition of her groundbreaking work leading to novel cancer therapies, the charity Marie Curie was named in her honour, immortalising her and her contributions to the field.

Gerty Cori (1896-1957)
Here we find another woman whose name outshines that of her husband, Carl, with whom she collaborated for most of her scientific career. Gerty graduated from medical school in 1920, along with her husband, before they emigrated to America in 1922. Here, they initially delved into the fate of sugar within the animal body, exploring the impacts of insulin and epinephrine. They made groundbreaking discoveries, including the demonstration of glycolysis in tumours in vivo. Their research on carbohydrate metabolism evolved from whole animal studies to experiments on isolated tissues, and eventually to tissue extracts and isolated enzymes, including some in crystalline form. In a pivotal moment in 1936, they isolated glucose-1-phosphate, known as “Cori ester,” and linked its formation to the activity of phosphorylase, which plays a crucial role in the breakdown and synthesis of polysaccharides. This discovery paved the way for the enzymatic synthesis of glycogen and starch in vitro.
Their research extended into the realm of hormone action mechanisms, with several studies focusing on the pituitary gland. They observed significant changes in rats that have had their pituitary gland removed, including a marked decrease in glycogen and a drop in blood sugar levels, accompanied by an increased rate of glucose oxidation. Further investigations into the effects of hormones on hexokinase revealed that certain pituitary extracts could inhibit this enzyme both in vivo and in vitro, while insulin was found to counteract this inhibition.
Beyond their groundbreaking research, the Cori’s served as an endless source of inspiration to their peers in the vibrant hubs of biochemical research they led. Their contributions to The Journal of Biological Chemistry and numerous other scientific journals have left an indelible mark on the field, showcasing their innovative work and collaborative spirit throughout their careers.

Gertrude Belle Elion (1918-1999)
Gertrude provides us with another tale of the triumph over adversity. After graduating with a degree in biochemistry in 1937, she failed to obtain a graduate position because she was a woman. After roles in laboratories and teaching, she joined the Burroughs Wellcome Laboratories in 1944 and became the assistant to Dr George Hitchings. Over the following 40 years, the pair were successful in the development of a vast array of new drugs and treatments. Much of their success is attributed to their methods. At the time, normal practice is best described as trial and error. However, Hitchings and Elion studied and intimately understood the difference between normal and pathogenic biochemistry, allowing them to envision and create targeted treatments for, to name just a few, leukaemia, urinary-tract infection, gout, malaria and viral herpes.
Although she never achieved her doctorate, in 1967 Elion was promoted to Head of the Department of Experimental Therapy, where she remained until her retirement in 1983. But Elion didn’t let a silly old thing like retirement get in her way. She remained at the Burroughs Wellcome Laboratories as a Scientist Emeritus and Consultant, including overseeing the development of azidothymidine, the first drug used to treat AIDS. Elion also became a Research Professor of Medicine and Pharmacology at Duke University, working with medical students in the field of tumour biochemistry and pharmacology, while continuing to write and lecture. Gertrude B. Elion passed away in 1999, bringing an end to a happy and fruitful career as one of the most influential women in science.

Rosalind Franklin (1920-1958)
Rosalind Franklin, another well-known name and one synonymous with the discovery of the DNA double helix, was an exceptional scientist whose meticulous work in X-ray crystallography laid the groundwork for one of the 20th century’s most significant scientific discoveries. Franklin graduated from Cambridge University in 1941, where she initially delved into the study of coal, gases, and carbon compounds, significantly contributing to the understanding of the molecular structures of these materials. Her early research not only showcased her exceptional skills in physical chemistry but also set the stage for her pioneering work in biology.
In 1951, Franklin joined King’s College London, where she was tasked with improving the X-ray crystallography unit. It was here that Franklin embarked on her most famous work: the study of the structure of DNA. Using her expertise in X-ray diffraction techniques, she captured Photograph 51, a critical piece of evidence revealing the helical structure of DNA. This image was crucial in identifying the double helix structure, although her contributions were not fully acknowledged until after her death.
Franklin’s research extended beyond DNA to the study of viruses, making significant strides in understanding the polio virus and the tobacco mosaic virus. Her work in virology, much like her work on DNA, was pioneering, employing her crystallography skills to uncover the detailed structure of viral particles. This work provided valuable insights into how viruses replicate and infect cells, contributing to the broader field of virology and paving the way for future research in virus structure and function.
Despite facing considerable challenges as a woman in a predominantly male scientific community, Franklin’s contributions were profound. Her relentless pursuit of scientific truth, combined with her exceptional experimental skills, left a legacy in the fields of chemistry, virology, and genetics. Beyond her scientific achievements, Franklin is remembered as a trailblazer who paved the way for future generations of women in science, demonstrating the critical role of perseverance and dedication in the pursuit of knowledge.

Françoise Barré-Sinoussi (1947-)
When discussing women who changed science, it’s impossible not to mention Françoise Barré-Sinoussi. She was born in Paris in 1947 and attended university there. Her passion for science saw her skip class to work at the Pasteur Institute, participating in investigations of retroviruses that caused leukaemia in mice. Although, this didn’t seem to affect her exams scores, and she received her PhD in 1974.
Françoise Barré-Sinoussi is hailed as the woman who discovered the viral cause of the AIDS epidemic. In 1982, the Pasteur Institute was approached by a virologist from a hospital in Paris, seeking help in identifying the cause of a worrying new epidemic. In a mere 2 weeks, Barré-Sinoussi, and her colleagues at the Pasteur Institute, isolated and grew a retrovirus from a biopsied lymph node of a patient at risk of AIDS. The virus, later named HIV-1, was found to be the cause of the AIDS epidemic.
Barré-Sinoussi has been contributing to virology research ever since, including areas such as the function of the host’s innate immune defences in managing HIV/AIDS, the elements contributing to the transmission of HIV from mother to child, and traits enabling a select group of HIV-positive individuals to restrain HIV replication without the need for antiretroviral medications. In 1992, Barré-Sinoussi was appointed Head of the Biology of Retrovirus Unit, renamed the Regulation of Retroviral Infections Unit in 2005.
However, Barré-Sinoussi didn’t stop at the science. She became a prominent activist for public education about AIDS prevention and helped to establish centres for diagnosing and treating AIDS around the world. In 2006, Barré-Sinoussi was elected to the International AIDS Society (IAS) Governing Council and served as president of the IAS from 2012-2016.

Jennifer Douda and Emmanuelle Charpentier
Most people have heard of CRISPR-Cas9. But many aren’t aware that we have women to thank for this scientific innovation. In 2012, Jennifer Douda (left) and Emmanuelle Charpentier (right) discovered the ingenious CRISPR-Cas9 technology – a groundbreaking tool in genetic engineering, which holds the promise of revolutionising medicine and biology. By enabling precise editing of the DNA in the cells of living organisms, CRISPR-Cas9 could lead to cures for genetic disorders, enhance crop resistance to pests and diseases, and advance our understanding of complex genetic conditions. It offers the potential to correct genetic defects, combat infectious diseases, and even manipulate traits in plants and animals, paving the way for significant advancements in therapeutic treatments, agricultural productivity, and the study of genetics. This discovery saw both women share the Nobel Prize in Chemistry in 2020.


We’ve only looked at a subsection of science, but one where the importance of the innovations and discoveries is felt by people every day. The scientists we’ve discussed here are only a small sample of the inspirational women that have graced the STEM field. We hope that by elucidating some of their work, we can inspire more girls and women to pursue a career in STEM. Careers in this field are challenging and rewarding, perfect for those with a curious mind and those in whom discovery sparks delight.
King Charlesā recent cancer diagnosis highlights the importance of early detection.

King Charles’ recent cancer diagnosis has highlighted the importance of early detection. By detecting potential health issues early at Randox Health, individuals can implement lifestyle changes, treatment plans, or preventative measures that might help mitigate or event prevent the progression of certain diseases.
At Randox Health, we deliver the information to empower people to be proactive about improving their health and well-being.
Using novel biomarker-based algorithms, Randox Health deliver real-time information on cancer risk e.g., prostate cancer and bladder cancer, allowing earlier intervention and treatment.
Traditionally, prostate cancer risk assessment involves PSA testing. PSA measures the level of Prostate Specific Antigen in the blood and can indicate abnormality within the prostate.
Although PSA is highly specific for prostate disease, it is not specific for prostate cancer. A raised PSA can also indicate an enlarged prostate, prostatitis, or a urinary tract infection.
The new Randox Health Prostate Cancer Risk algorithm combines traditional PSA testing, with analysis of novel biomarkers to help determine risk of prostate cancer. Combining biomarkers in this way can help strengthen assessment and enable those with an increased risk of prostate cancer to be prioritized for further investigation, as well as reducing the need for unnecessary and invasive further investigations in low-risk individuals.
It is estimated that 30-50% of all cancer cases are avoidable, in many cases early detection is key and can save lives – cancer that is diagnosed at an early stage, when it isn’t too large and hasn’t spread, is more likely to be treated successfully.
Spotting cancer at an early stage saves lives, many people however, don’t have access to the information or services to facilitate this detection – Over 8 million people within the UK are currently awaiting diagnostic testing. At Randox Health, with over forty years’ experience in creating new and innovative diagnostic technologies, we have a focus on early diagnosis and prevention; aiming to achieve better health outcomes whilst reducing the burden on clinical services.
At Randox Health we offer genetic risk tests for inherited cancers including Breast and Ovarian Cancer, Bowel Cancer, and others. In addition, we offer a range of full body health checks that include common tumour associated markers.
The results gained allows you to not only get a more accurate interpretation of your current health status but knowingly make lifestyle changes that can help you prevent future health risks.
Additional Information on tests available at Randox Health
Genetic Cancer Risk
Available from £750
1 in 10 cancers are thought to be caused by hereditary gene mutations. Our Genetic Cancer Risk test covers 94 different genes suspected to play a role in predisposing one to cancer, including genes associated with increased risk of breast, ovarian, prostate, colorectal and thyroid cancer.
If a genetic variant linked to cancer is found there are options available to help reduce the risk of developing cancer.
- Lifestyle changes
- Regular screening and health checks
- In some cases – risk-reducing surgery.
Our Randox Health Genetic Counsellor will guide and support you throughout testing processes and will also be available to explain your results and advise on next steps.
Genetic Breast and Ovarian Cancer Risk
Available from £499.
Around 5-10% of breast cancer cases are thought to be hereditary and up to 20% of ovarian cancers are genetic. Our Genetic Breast and Ovarian Cancer Risk test covers 8 different genes including BRCA1 and BRCA2 associated with both hereditary breast and ovarian cancer.
Genetic Bowel Cancer Risk
Available from £499
It is estimated that 1 in 15 males and 1 in 8 females will develop bowel cancer in their lifetime with around 5-10% of all bowel cancers thought to be caused by a mutation in a known gene. Our bowel cancer risk test screens for mutations in 11 different genes associated with increased risk of bowel cancer.
Advanced PSA
Available from £49
Almost 50,000 men in the United Kingdom (UK) are diagnosed each year with prostate cancer (PCa). Secondary referrals for investigations rely on PSA levels and digital rectal examination. However, both tests lack sensitivity and specificity, resulting in unnecessary referrals to secondary care for costly and invasive biopsies.
Using a novel combination of biomarkers including PSA, our prostate Cancer Risk Score can help to assess your risk of prostate cancer and help reduce the need for unnecessary, invasive further investigations in low-risk individuals.
A recent study demonstrated that the combination of markers included within this test significantly improved the predictive potential of PSA alone in identifying individuals with prostate cancer.
Everyman/ Everywoman Plus Tumour-Associated Markers
Available from £857
With this health package you can get unrivalled insights on your overall health in addition to several tumour markers associated with bowel, ovarian, prostate, liver, and pancreatic cancer from a simple blood test. Regular health screenings helps to identify risks early allowing you to get the appropriate treatment sooner.
Signature Platinum Range
Available from £2600
Get truly unrivalled insights on your current health and future health risks that empower you to take action to help improve your health and prevent illness.
Measure 350 health data points relating to your full body health including genetic, stress, neurological & tumour associated markers with full repeat testing after 6 months is included to allow you to effectively evaluate the progress of your health journey to the fullest and identify further areas for improvement.
GPs appointments, referrals and prescriptions are included if required.
Free NHS Health Check Service for Doncaster Residents in partnership with Randox Health
From February 5th, eligible Doncaster residents aged between 40-70 will be able to book a free NHS health check.
The health checks aim to detect the risk of an individual having a heart attack, stroke, or developing Type 2 diabetes over the next decade. In its first five years, the NHS Health Check initiative is estimated to have prevented over 2,500 heart attacks or strokes as a result of people receiving preventative treatment following their Health Check.
Following the Health Check, the results will be made available to GP’s for inclusion on patient medical records to enable further follow-up if required. Not only does the Health Check enable prevention and mitigation through the early identification of serious illness, but it also offers onward support if required to assist with lifestyle modification on issues including smoking, alcohol, and weight management.
This service is specifically focussed on providing checks to patients at high risk, therefore selected patients will receive a letter on behalf of their GP inviting them to avail of the check. The dedicated NHS Health Check Clinic t Cussins House, 22-28 Wood Street is situated conveniently in central Doncaster benefitting from excellent accessibility and transport links. In addition to this, for those that cannot access the city centre, appointments will be provided at a range of community locations across the borough.
To check your eligibility and book an appointment please visit: NHS health Checks (randox.com)
or phone the Randox team on: 0800 2545 452
David Ferguson, Chief Operating Officer for Randox Health, said: “At Randox Health we promote preventative healthcare and action, so are delighted to be part of this initiative to bring health checks to Doncaster.
“We believe that early diagnostic health testing delivers better outcomes for individuals, relieving the pressure on our NHS by enabling lifestyle changes and medical intervention.”
Additional notes:
- To be eligible patients must be aged between 40 and 74, live or be registered to a GP in Doncaster, and meet the criteria regarding previous conditions.
- NHS Health Check Doncaster Address: Suite 1-05 & 1-06 Cussins House, 22-28 Wood Street, Doncaster, DN1 3LW.
- Appointments must be booked in advance and will be available from Wednesday, 14th February.
Free health checks in Sandwell
Sandwell residents will be able to benefit from diagnostic NHS Health Checks, testing for diabetes, heart and kidney disease, and hyper tension.
After the launch of Sandwell Council’s partnership with Randox Health in 2023,which saw thousands of eligible Sandwell residents offered diagnostic NHS Health Checks, the partnership has continued – giving residents a health boost for 2024!
Free tests will be offered to Sandwell residents aged between 40 and 70 who have not previously suffered coronary heart disease, strokes, diabetes, or kidney disease. Over the next few weeks those eligible will receive letter inviting them to the 20-minute NHS Health Check, under joint branding from Randox, Healthy Sandwell and the NHS.
Tests and clinics will be available for Sandwell residents in both Sandwell and, if convenient, in Birmingham, with additional free body composition analysis for health checks completed at the Birmingham clinic. Results will be made available for GPs for review and inclusion on patient medical records.
Not only does the testing programme enable prevention and mitigation through he early identification of serious illness, but it also allows lifestyle modification on issues including smoking, alcohol, and weight management. This partnership also includes a limited number of 3-month free gym memberships.
Councillor Suzanne Hartwell, Sandwell Council’s Cabinet Member for Adults, Social Care & Health, said: “The good health of our residents has always been a priority for the Council. This initiative will have a significant and beneficial impact on the health and longevity of thousands of people living in the area. It will enable those at high risk to take medical and lifestyle steps to prevent illnesses which could, if not detected early, shorten, or change lives.”
David Ferguson, Chief Operating Officer for Randox Health said, “Randox is delighted to be part of this joint initiative with Sandwell Council’s Public Health Team. It has long been our belief that early diagnostic health testing delivers better outcomes for individuals. It relieves the pressure on our NHS by enabling lifestyle change and medical intervention. This in turn, prevents or mitigates illnesses which could otherwise require intense long-term treatment.”
UKAS ISO15189:2022 Transition Update
Throughout 2023, UKAS have been hard at work training Assessment Managers and Technical Assessors on the new requirements of the updated ISO15189 guidelines, sharing information about the updated standard and developing the UKAS 15189:2022 Transition Hub providing a one-stop-shop for information on the ISO15189:2022 update.
Recently, UKAS have published a Transition update to remind laboratories of where they stand in seeking their updated accreditation. In this update, UKAS state “As per the UKAS transition plan, all assessments due to take place from the 1st January 2024 will be to ISO15189:2022.”
A gap analysis will be required one month prior to transition assessments, detailing the gaps and the actions which have been taken to remedy these gaps. This should include evidence, such as updated documents and records, embedded in the gap analysis document, showing what action has been taken to bring a laboratory’s practices in line with the updated standard.
An important note included in this transition update is , “UKAS cannot grant accreditation on intent; organisations shall make the necessary changes and have implemented these prior to the transition assessment.” So if your accreditation assessment is due soon, you might want to make use of our ISO15189:2022 Accreditation Guide to assist you in your gap analysis to ensure you don’t miss out.
This is crucial for laboratories because failure to align with the 2022 version of the standard before the deadline of 6th December 2025 will result in a suspension of ISO15189 accreditation for up to 6 months.
Some of the key accreditation updates include:




Randox Quality Control’s Acusera range provides true third part quality controls designed to help you achieve all aspects of ISO15189:2022 accreditation including commutable matrices containing consistent, clinically relevant concentrations with unrivalled consolidation of analytes. To learn more about our range of quality control products, visit our website or, get in touch today at marketing@randox.com