Lactate Dehydrogenase
Lactate Dehydrogenase
Reagent | Lactate Dehydrogenase
Key Benefits
Excellent precision
The LD assay showed a precision of less than 4% CV
Exceptional correlation
The assay showed a correlation of r=0.98 against another commercially available method
Flexibility
Liquid and lyophilised reagents available, offering greater consumer choice
Randox Lactate Dehydrogenase L-P (LDH) (NAD)
- LDH NAD method
- Liquid ready-to-use reagents
- Stable to expiry at 2-8°C
Cat No | Size | ||||
---|---|---|---|---|---|
LD3842 | R1 6 x 20ml (L) R2 3 x 18ml | Enquire | Kit Insert Request | MSDS | Buy Online |
(L) Indicates liquid option |
Instrument Specific Applications (ISA’s) are available for a wide range of biochemistry analysers. Contact us to enquire about your specific analyser.
Randox Lactate Dehydrogenase P-L (UV)
- UV method
- Liquid and lyophilised reagents available
- Stable to expiry at 2-8°C
Cat No | Size | ||||
---|---|---|---|---|---|
LD3818 | R1 6 x 20ml (L) R2 3 x 11ml | Enquire | Kit Insert Request | MSDS | Buy Online |
LD8051 | R1 6 x 56ml (L) R2 6 x 20ml | Enquire | Kit Insert Request | MSDS | Buy Online |
LD8322 | R1 4 x 20ml (L) R2 4 x 7ml | Enquire | Kit Insert Request | MSDS | Buy Online |
(L) Indicates liquid option |
Instrument Specific Applications (ISA’s) are available for a wide range of biochemistry analysers. Contact us to enquire about your specific analyser.
What is Lactate Dehydrogenase assay used for?
Lactate dehydrogenase (LD) catalyses the interconversion of lactic acid and pyruvic acid. The enzyme is composed of 4 peptide chains and exists in 5 isomeric forms. LD is widely distributed throughout the body, and the highest concentrations are found in the liver, heart and skeletal muscle. LD activity is significantly elevated during myocardial infarction. Maximum levels are reached 24 to 48 hours after the onset of chest pain and may remain elevated for 7 to 12 days post infarction. Increases in LD activity are also associated with other pathological conditions including liver disease, progressive muscular dystrophy, megaloblastic and pernicious anaemia.
Publications
Clinical Chemistry Panel
For more information or to view more reagents within the clinical chemistry panel, please click here
Veterinary Panel
For more information or to view more reagents within the veterinary panel, please click here
The Correlation Between Liver Cirrhosis and Lactic Acidosis
Lactic acid is an organic compound which produces the conjugate base lactate through a dissociation reaction. Due to it being a chiral compound, two optical isomers of lactate exist; D-Lactate and L-Lactate. The lactate dehydrogenase (LDH) enzyme can produce and metabolise both isomer forms to pyruvate, however due to the isomer-specific nature of LDH different forms of the enzyme are required. D-Lactate requires a D-LDH form whereas L-Lactate requires L-LDH. As a result of this requirement, combined with the fact that mammalian cells only contain L-LDH, the lactate produced in humans is almost exclusively L-Lactate.
One of the roles of L-Lactate is its involvement in the Cori Cycle, a metabolic pathway involved in the production of glucose. The cycle involves the rotatory transportation of lactate and glucose from the liver and the muscle. Lactate is produced in the muscle through glycolysis which is then transported to the liver through the blood stream. In the liver, the lactate is oxidised to pyruvate and then converted to glucose by gluconeogenesis, which is then transported back to the muscle for the process to start again. 1500 mmol of lactate is produced daily by the body and is cleared at a constant rate via the liver.
Problems can arise if the liver fails to regulate the lactate produced. Hyperlactamia is the name given to elevated levels of lactate in the body, as a result of the rate of production exceeding the rate of disposal. This is due to a lack of oxygen that reduces blood flow to the tissues. If levels continue to rise a patient is at risk of lactic acidosis.
The liver is an important tissue in the regulation of lactate, it is therefore no surprise that liver damage can prevent this process resulting in a further diagnosis of lactic acidosis. A healthy liver is a vital part of lactate regulation as it acts as the main consumer of lactate and contributes to 30-40% of lactate metabolism. Potential victims are patients who suffer with cirrhosis, a complication of liver disease, which is commonly caused by alcohol abuse and viral Hepatitis B and C.
Patients with liver cirrhosis have a higher risk of increased lactate levels. Increased levels of the lactate ions disturbs the acid-base equilibrium, causing a tilt towards lactic acidosis. The mortality rate of patients who develop lactic acidosis is high, prompt recognition and treatment of the underlying cause remain the only realistic hope for improving survival.
The Randox L-Lactate reagent allows for a prompt and accurate diagnosis of lactic acidosis.
Randox L-Lactate Reagent
The Randox L-Lactate key benefits include:
- Excellent working reagent stability of two weeks when stored at + 15 – +25°C
- Exceptional correlation of r = 0.99 when compared against other commercially available methods
- A wide measuring range of 0.100 – 19.7 mmol/l and so is capable of detecting abnormal levels in a sample
Other features:
- Colorimetric method
- Lyophilised reagents for enhanced stability