Beckman Coulter AU
Applications for Beckman Coulter AU Series
We develop a range of applications for the Beckman Coulter AU Series (400 / 480 / 600 / 640 / 680 / 2700 / 5400 / 5800 / DxC700AU) analysers so that laboratories worldwide can enjoy the benefits of freedom of choice from an independent manufacturer, Randox Laboratories.
Beckman Coulter AU Series Applications
We have 87 reagents available for the Beckman Coulter AU (400 / 480 / 600 / 640 / 680 / 2700 / 5400 / 5800 / DxC700AU) analysers, and are always developing more. If you don’t see the application you are looking for, please contact us to request an application. All kits are produced to international standard and have ISO 13485 accreditation.
Need Instructions?
Download kit inserts for free on our online portal.
Email Us
Get in touch with Randox via email at reagents@randox.com
Buy Online
Order reagents kits online by visiting our online store
Cardiology Reagents Panel
Randox Cardiology Reagents Panel
Randox is a leading provider of diagnostic reagents for the assessment of cardiovascular disease risk. Our extensive menu of cardiac biomarkers within the cardiology reagents panel include: routine lipid tests such as Homocysteine, hsCRP, Apo A-I, Apo A-II, Apo B and Lp(a), as well as, unique assays for cardiac risk assessment including sdLDL Cholesterol, Apo C-II, Apo C-III and Apo E. Check out our benefits below.
Benefits
Randox Cardiology Reagents
Risk Assessment
- CK-MB useful in patients with chest pain; Creatine Kinase is an enzyme produced in many different types of cells, of which high levels indicate muscle trauma or damage.
- Routine lipid tests to determine the patient’s cholesterol and triglyceride levels – HDL Cholesterol, LDL Cholesterol, Total Cholesterol and Triglycerides
- Independent risk assessment tests such as sdLDL Cholesterol and Lipoprotein(a) to determine any genetic factors which may increase their risk of CVD. Please note, this is necessary even for patients who have good cholesterol levels
- Secondary tests, such as High Sensitivity CRP, in addition to risk assessment markers and lipid evaluation – secondary tests are important in predicting future cardiac events of individuals with no previous history of CVD and those deemed healthy as a result of primary tests; approximately half of all heart attacks occur in patients classified as low risk. In addition, they can also be used to evaluate the risk of a recurrent cardiac event
- Speciality tests include
- Homocysteine – elevated levels of homocysteine have been linked to various disease states including CVD. Extremely high levels are found in patients with homocystinuria, of which many suffer from early arteriosclerosis.
Email Us
Get in touch with your local sales representative via email at reagents@randox.com
Need Instructions?
Kit Inserts are available to download for free on our online portal.
Buy Online
Order your cardiology kits today by visiting our online store
Beta-2 Microglobulin Reagent
Reagent | Beta 2 Microglobulin
Key Benefits of the Beta-2 Microglobulin reagent
Wide measuring range
The healthy range of beta-2 microglobulin is 0.9 – 3.0 mg/l. The Randox Beta-2 Microglobulin reagent can comfortably detect levels outside of this range with a measuring range of 0.56 – 20.9 mg/l.
Excellent stability
Stable until expiry date when stored at +2 to +8⁰C
Liquid ready-to-use reagents
The Randox Beta-2 Microglobulin reagent comes in a liquid format which is more convenient as the reagent does not need to be reconstituted which aids in reducing the risk of errors occurring
Other features of the Beta-2 Microglobulin reagent
- Immunoturbidimetric
- Liquid ready-to-use reagents
- Stable to expiry when stored at +2 to +8⁰C
- Measuring range 0.56 – 20.9 mg/l
Cat No | Size | ||||
---|---|---|---|---|---|
BM3887 | R1 2 x 11ml (L) R2 2 x 4.3ml | Enquire | Kit Insert Request | MSDS | Buy Online |
Instrument Specific Applications (ISA’s) are available for a wide range of biochemistry analysers. Contact us to enquire about your specific analyser.
What is the Beta-2 Microglobulin assay used for?
What is beta-2 microglobulin?
Located on the surface of most cells, especially nucleated cells, are large surface proteins called Class I antigens which are made up of a heavy chain and a light chain. The heavy chain is produced by multiple genes and the light chain is chemically bound to it. This light chain is the beta-2 microglobulin. Class I antigens are mostly expressed on lymphoid cells and expressed less on the lungs, kidney and liver and are sparsely expressed on skeletal muscle and the brain. Beta-2 microglobulin is shed by the cells which becomes detectable in the bloodstream under normal conditions.
What is the beta-2 microglobulin assay used for?
Elevated concentration levels of beta-2 microglobulin is attributed to diseases with a high cell turnover. It is a powerful prognosis factor for multiple myeloma, a type of bone marrow cancer. It is also used to detect chronic lymphocytic leukemia and some types of lymphomas. For more information on tumor markers, please click here [external link].
Low concentration levels of beta-2 microglobulin in serum and high concentration levels is urine is attributed to renal tubular disease. This is particularly important during the onset on diabetes as the kidneys grow larger and the glomerular filtration rate (GFR) becomes supranormal which are risk factors for the development of diabetic nephropathy in later life. For more information on renal function in diabetic disease model, please click here [external link].
The Randox Beta-2 Microglobulin assay is used as a white blood cell tumor marker as well as a biomarker for renal disease.
Diabetes Panel
For more information or to visit more reagents within the diabetes panel, please click here
Lipid Testing Panel
Introducing The Randox Lipids Panel
Cardiovascular disease (CVD) caused by atherosclerosis (arteriosclerosis) is the leading cause of morbidity and mortality in Western countries1. Atherosclerosis involves the hardening and narrowing of vessels in the systemic system. This process originates from the build-up of fatty deposits through a process known as atherogenesis. If the build-up increases, plaque rupturing may occur which may lead to myocardial infarction2.
The mission of the National Lipid Association (NLA) “is to enhance the practice of lipid management in clinical medicine”. NLA advocate advancing the current lipid testing profile. The current lipid panel consists of testing LDL cholesterol, HDL cholesterol and triglycerides, which only detects approximately 20% of all atherosclerotic cardiovascular disease (ASCVD) patients. Advanced lipid testing is recommended to optimise patient treatment3.
Current Challenges
75% of circulatory risk factors are preventable4
1 in 4 deaths in the US is attributed to heart disease6
6 million people in the UK suffer from narrowing of the heart arteries5
How Can Randox Help With The Current Challenges
As the current lipid panel consists of testing LDL cholesterol, HDL cholesterol and triglycerides, which only detects approximately 20% of all coronary artery disease (CAD) patients, advanced lipid testing is recommended to optimise patient treatment. The Randox lipid profile encompasses niche and superior performance assays for the detection of conventional risk factors, as well as emerging biomarkers associated with further risk.
Apolipoprotein C-III (Apo C-III)
A niche product from Randox, Apo C-III deficiency has shown to increase the rate of triglyceride clearance from plasma by up to 7 fold. Apo C-III levels have been reported higher in several conditions such as type 2 diabetes, hyperbilirubinemia and decreased thyroid function.
Apolipoprotein E (Apo E)
A niche product from Randox, Apo E has been found to have an association with neurodegenerative conditions such as Alzheimer’s Disease and Multiple Sclerosis. A deficiency in Apo E gives rise to high levels of serum cholesterol and triglycerides, leading to premature atherosclerosis
HDL3 Cholesterol (HDL3-C)
A niche product from Randox, HDL3-C, a subclass of HDL-C, has an inverse correlation with CVD risk. Several clinical studies indicate that measuring these HDL-C subclasses better reflects primary and secondary CHD risk than measurement of total HDL-C, making it a significant independent biomarker for better risk profiling when used together with other risk markers.
Lipoprotein (a) (Lp(a))
A unique product from Randox, Lp(a) has proven to have a causal role in the premature development of atherosclerosis and CVD as elevated Lp(a) levels associate robustly and specifically with increased CVD risk. The Randox Lp(a) assay is one of the only methodologies on the market that detects the non-variable part of the Lp(a) molecule and therefore suffers minimal size related bias.
Small-dense LDL Cholesterol (sdLDL-C)
A niche product from Randox, sdLDL-C, a subtype of LDL cholesterol, can more readily permeate the inner arterial wall. Research indicates that individuals with a predominance of sdLDL-C have a 3-fold increased risk of myocardial infarction.
Liquid ready-to-use assays
The Randox lipid assays are available in a liquid ready-to-use format for convenience and ease of use. (The Triglycerides kit is also available in a lyophilised format).
Wide measuring ranges
The Randox lipid assays can comfortably detect levels outside of the healthy range for the accurate detection of abnormal levels, offering peace of mind in patient samples.
Excellent correlation with standard methods
The Randox lipid assays display excellent correlations when compared against standard methods, offering trust and confidence in results.
Applications are available
Applications are available detailing instrument-specific settings for the convenient use of the Randox lipid assays on a wide range of clinical chemistry analysers.
Cardiovascular disease (CVD) refers to disease of the heart or blood vessels. Heart disease encompasses a number of diseases that affect the heart. In contrast, vascular disease encompasses a number of diseases that affect the blood vessels. Circulatory health problems are the result of vascular disease. Developing problems within the vascular system can go undetermined and in some patients the problem may only become apparent when they experience a heart attack or stroke 7.
Atherogenesis and Atherosclerosis
Atherogenesis is a circulatory disease whereby atheromas are formed (plaque build-up) within the artery. Plaque is a combination of cholesterol, fat, calcium, lipids and other substances within the blood stream. As time progresses, the plaque hardens, narrowing the arteries. This is known as atherosclerosis. Consequently, blood flow through the narrowed artery is reduced, limiting the supply of blood to vital organs and bodily tissues. As atherogenesis can affect any artery within the body, different diseases may develop based on the artery that is affected. Such diseases include: coronary heart/artery disease, carotid artery disease, peripheral artery disease and chronic kidney disease8.
Plaque Rupture
As atherogenesis and atherosclerosis causes plaque to build up and harden within the arteries precipitating thrombi, blood flow to the heart, brain, or the lower extremities is obstructed (depending on the artery affected). This can further develop into coronary heart/artery disease (heart), ischemic stroke (brain) or peripheral vascular disease (lower extremities). However, the most common and most discussed of these manifestations is coronary heart/artery disease9. These manifestations occur when the plaque ruptures. The risk of the plaque rupturing is determined by the type of plaque (composition) rather than the size of the plaque (volume) as only plaques that are rich in soft extracellular lipids are rupture-prone (vulnerable). Whilst most plaque ruptures are small causing an acute coronary event, the actual vulnerability of the plaque may change over time. Luckily, the vulnerable plaque components are most likely to regress with treatment10.
Myocardial Infarction
The processes of atherogenesis, atherosclerosis and plaque rupturing, if left undetected can a myocardial infarction (MI) or “heart attack” if the plaque build-up has occurred in the coronary artery11. MI occurs when the blood supply to heart is completely blocked by the formation of a clot or a blockage due to a loose piece of atheroma (plaque rupturing). If the blood supply to the heart is blocked the cells in the heart begin to die due to the lack of oxygen, causing chest pain (angina). The extent of the blockage and the amount of heart muscle affected will determine whether this malfunction will affect the hearts ability to pump blood12. The signs of atherogenesis, atherosclerosis and plaque rupturing can be subtle, and most heart attack victims may only feel symptoms in the days leading up to the attack. For 80% of people, the first sign of a heart attack is angina. Other symptoms to be aware of are shortness of breath, anxiety, sweating, light-headedness and temporary changes in vision 11.
Exercise
Regular exercise has a major effect on your circulation and cardiovascular health. Moderate levels of exercise can increase blood flow and reduce the risk of poor circulatory health conditions such as atherosclerosis. Exercise promotes good circulation as it strengthens the heart muscles, lowing the resting heart rate and preventing the build-up of plaque in the arteries. It is important for those with current circulation problems to be vigilant while exercising to ensure they are not over exerting themselves13.
Know your healthy fats
Diet changes are important for improving circulatory health. Eating a variety of foods such as lean meats, vegetables, fruits, legumes and whole grains will aid in lowering lipid levels and keep them low. It is recommended that more unsaturated fats are consumed in comparison to saturated fats, as saturated fats raise sdLDL-C levels which can lead to an increased risk of atherosclerosis. On the other hand, unsaturated fats such as monounsaturated or polyunsaturated fats may increase HDL levels and are known as being ‘heart-healthy’. It is recommended to find healthier alternatives for certain foods such as butter and oil14.
Stop Smoking
Smoking can cause circulatory problems in several ways. Most notably it can cause the carotid arteries (arteries which supply oxygen to the brain) to become filled with plaque. Also, smoking can cause PAD by reducing adequate blood supply to the limbs which can lead to leg pain and possibly amputation. Quitting smoking has been proven to have positive effects on circulation: just 20 minutes after a cigarette, blood pressure decreases and oxygen levels return to normal. Within 24 hours, the chance of a heart attack will have already decreased and after 48 hours, nerve endings deeded by the habit are expected to regenerate, with sense of taste and smell improving also. A year after quitting, the risk of coronary heart disease (CHD) will be halved. After 15 years, a quitter’s risk of CHD is now similar to that of a person who has never smoked14.
Related Products
Cardiology Testing Panel
Featured Reagent Home
Reagents Resource Hub
References
[1] Burnett, John R. Lipids, Lipoproteins, Atherosclerosis and Cardiovascular Disease. National Center for Biotechnology Information (NCBI). [Online] Clin Biochem Rev., 25 February 2004. [Cited: 3 December 2018.] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1853363/.
[2] Zimmermaann, Kim Ann. Circulatory Systenm: Facts, Function & Diseases. Live Science. [Online] 16 March 2018. [Cited: 3 December 2018.] https://www.livescience.com/22486-circulatory-system.html.
[3] National Lipid Association. National Lipid Association Releases Updated Recommendations on the Use of PCSK9 Inhibitors at the 15th Annual Scientific Session. [Online] no date. [Cited: 3 December 2018.] https://www.lipid.org/nla/national-lipid-association-releases-updated-recommendations-use-pcsk9-inhibitors-15th-annual.
[4] World Heart Federation. Driving Sustainable Action for Circulatory Health: Whitepaper for Circulatory Health. [Online] Global Coarlition for Circulatory Health, no date. [Cited: 30 November 2018.] https://www.world-heart-federation.org/wp-content/uploads/2018/11/White-Paper-for-Circulatory-Health.pdf.
[5] British Heart Foundation. Research into atherosclerosis: 4 scientists talk about their work. [Online] no date. [Cited: 30 November 2018.] https://www.bhf.org.uk/informationsupport/heart-matters-magazine/research/atherosclerosis..
[6] Centers for Disease Control and Prevention. Heart Disease Facts. [Online] 28 November 2017. [Cited: 4 December 2018.] https://www.cdc.gov/heartdisease/facts.htm.
[7] Cardiovascular Disease. NHS. [Online] NHS UK, September 15, 2018. [Cited: November 30, 2018.] https://www.nhs.uk/conditions/cardiovascular-disease/
[8] National Heart, Lunch, and Blood Institute. Atherosclerosis. [Online] no date. [Cited: 28 November 2018.] https://www.nhlbi.nih.gov/health-topics/atherosclerosis.
[9] Fog Bentzon, Jacob, et al. Mechanisms of Plaque Formation and Rupture. Circulation Research. [Online] 6 June 2014. [Cited: 29 November 2018.] https://www.ahajournals.org/doi/abs/10.1161/circresaha.114.302721.
[10] Falk, E. Why do plaques rupture? National Center for Biotechnology Information. [Online] Circulation, December 1992. [Cited: 29 November 2018.] https://www.ncbi.nlm.nih.gov/pubmed/1424049.
[11] MedBroadcast. Heart Attack (Myocardial Infarction, MI). [Online] no date. [Cited: 30 November 2018.] https://medbroadcast.com/condition/getcondition/heart-attack.
[12] Harvard Health Publications. Heart Attack (Myocardial Infarction. [Online] 10 September 2018. [Cited: 30 November 2018.] https://www.drugs.com/health-guide/heart-attack-myocardial-infarction.html.
[13] Bergeson Becco, Laine. How Exercise Affects Circulation (and Vice Versa). Experience Life. [Online] June 2017. [Cited: 4 December 2018.] https://experiencelife.com/article/how-exercise-affects-circulation-and-vice-versa/.
[14] Mayo Clinic. Top 5 lifestykle changes to improve your cholesterol. [Online] 11 August 2018. [Cited: 4 December 2018.] https://www.mayoclinic.org/diseases-conditions/high-blood-cholesterol/in-depth/reduce-cholesterol/art-20045935.
Bile Acids Reagent
Bile Acids Reagents
Features & Benefits of the Randox Bile Acids reagents
Excellent linearity
The Randox Bile Acids method is linear up to a concentration of 150 µmol/l
Exceptional correlation with standard methods
The Randox methodology was compared against other commercially available methods and the Randox Bile Acids assay showed a correlation coefficient of 0.99
Flexibility
Liquid and lyophilised reagents available for greater customer choice
Analyser protocols
Protocols are available for a range of analysers
Excellent stability
Stable to expiry when stored at +2 to +8°C
Ordering information
Cat No | Size | ||||
---|---|---|---|---|---|
BI3863 (5th) | R1 2 x 18ml (L) R2 2 x 8ml | Enquire | Kit Insert Request | MSDS | Buy Online |
BI7982 (5th) | R1 6 x 50ml R2 6 x 18ml | Enquire | Kit Insert Request | MSDS | Buy Online |
BI8150 (5th) | R1 2 x 17.7ml (L) R2 2 x 8.9ml | Enquire | Kit Insert Request | MSDS | Buy Online |
Instrument Specific Applications (ISA’s) are available for a wide range of biochemistry analysers. Contact us to enquire about your specific analyser.
What are Bile Acids used for?
Liver Function
Measuring total bile acid (TBA) levels may prove useful for the detection of liver diseases such as viral hepatitis, mild liver injury through drug use and for further evaluation of patients with chronic hepatitis who were previously treated successfully. TBA levels may rise up to 100 times the normal concentration in patients with liver disease due to impairment of hepatic synthesis and extraction of bile acids. Measurement of TBA in serum can be used in the diagnosis and prognosis of liver diseases and may detect some forms of liver disease earlier than standard liver markers due to the correlation of TBA with liver function, rather than liver damage.
Bile Acid Deficiency
TBA deficiency is caused by a genetic error in one of the 17 enzymes that produce bile acids. Deficiency can lead to liver failure and even death in infants, therefore early detection is vital. People with TBA deficiency may exhibit symptoms, including:
• Vitamin deficiencies, specifically of fat-soluble vitamins such as A, D, E, and K
• Jaundice
• Stunted or abnormal growth
• Diarrhoea
• Loss of liver function
• Liver failure
Intrahepatic Cholestasis of Pregnancy
Intrahepatic cholestasis of pregnancy (ICP) or obstetric cholestasis is a pregnancy-specific liver disorder. It can be indicated by pruritus, jaundice, elevated TBA levels and/or serum transaminases and usually affects women during the second and third trimester of pregnancy. ICP is a condition that restricts the flow of bile through the gallbladder resulting in a build-up of TBA in the liver. Due to the build-up, Bile Acids leak into the bloodstream where they are detected at concerning levels. It is an extremely serious complication of pregnancy that can lead to the increased risk of premature birth or even stillbirth as such it is vital that women with the condition are monitored carefully.
According to several reports TBA levels in ICP can reach as high as 100 times the upper limit of a normal pregnancy. It has been reported that a doubling in maternal serum TBA levels, results in a 200% increased risk of stillbirth. Additionally, bile acids can affect the foetal cardiovascular system as it has been found that there are often cardiac rhythm disturbances in the foetus due to the elevated TBA in circulation.
There are several risk factors associated with ICP such as family history, use of oral contraceptives, assisted reproduction techniques and multiple gestation. Genetic influence accounts for approximately 15% of ICP cases. Dietary selenium is a contributing environmental factor as serum selenium levels often decrease throughout pregnancy. Further to this, incidences of ICP rise in the winter months and are most likely due to the fact selenium levels are naturally less during these months. In healthy pregnancies, there is very little increase in TBA levels although a slight increase is likely to be seen in the third trimester.
Measurement of TBA in serum is thought to be the most suitable method of diagnosing and monitoring ICP.
Bile acids are water-soluble and amphipathic end products of cholesterol metabolism formed in the liver. Bile is stored in the gall bladder and released into the intestine when food is consumed. The fundamental role of bile acids is to aid in the digestion and absorption of fats and fat-soluble vitamins in the small intestine. In doing so, bile acids have five physiological functions within the body as shown below:
Determining the cause and extent of liver damage is important in guiding treatment decisions and preventing disease progression. Standard liver function tests include; ALT, AST, ALP, GGT and Bilirubin. The measurement of TBA is most beneficial in conjunction with these standard liver tests and offers unrivalled sensitivity allowing identification of early stage liver dysfunction.
There are several commercial methods available for the detection and measurement of TBA in serum. Traditional TBA tests based on the enzymatic method use nitrotetrazolium blue (NBT) to form a formazan dye. The reaction is measured at 546nm and the intensity of the colour is proportional to the concentration of bile acids.
Newer methods such as the enzyme cycling method or fifth generation methods offer many advantages including greater sensitivity, liquid reagents, small sample volumes and reduced instrument contamination from formazan dye. Additionally, the fifth generation assay does not suffer from interference from lipaemic or haemolytic samples. Both lipaemia and haemolysis are common in new-borns and pregnant women.
Enzyme cycling methods offer superior analytical performance, two reactions are combined. In the first reaction, bile acids are oxidised by 3-α hydroxysteroid dehydrogenase with the subsequent reduction of Thio-NAD to Thio-NADH. In the second reaction, the oxidised bile acids are reduced by the same enzyme with the subsequent oxidation of NADH to NAD. The rate of formation of Thio-NADH is determined by measuring the specific absorbance change at 405nm. Enzyme cycling means multiple Thio-NAD molecules are generated from each bile acid molecule giving rise to a much larger absorbance change and signal amplification, increasing the sensitivity of the assay.
The assay principle is demonstrated in the diagram below:
The Randox fifth generation assay utilises the advanced enzyme cycling method which displays outstanding sensitivity and precision compared to traditional enzymatic based tests. The assay shows excellent linearity of up to 188 µmol/l with the normal upper range of TBA in a fasting serum sample being at 10 µmol/l. The liquid ready-to-use reagent is available along with complementary controls and calibrators for a complete testing package.
Abbott Alinity
Applications for Abbott Alinity Analysers
Randox have developed a range of applications for use on Abbott Alinity Analysers. Readily available applications from Randox allows laboratories worldwide to easily enjoy the benefits of freedom of choice, from an independent manufacturer whilst enjoying the benefits of the Randox panel of reagents.
Available applications for Abbott Alinity
We currently have 38 reagents available for the Abbott Alinity, and we are always developing more, therefore if you don’t see the specific application you are looking for, please email us to request an application. All kits are produced to international standard and have ISO 13485 accreditation.
Email Us
Get in touch with Randox via email at reagents@randox.com
Need Instructions?
Download kit inserts for free on our online portal.
Buy Online
Order reagents kits online by visiting our online store
5th Generation Bile Acids Assay
Benefits of the Randox 5th Generation Bile Acids Assay
Superior methodology
–
Utilising the advanced enzyme cycling method, the Randox 5th generation bile acids assay displayed outstanding sensitivity and precision when compared to the traditional enzymatic based tests.
Excellent measuring range
–
The Randox 5th generation bile acids assay has a measuring range of 2.16 – 238µmol/l for the comfortable detection of clinically important results.
Exceptional correlation
–
A correlation coefficient of r=0.99 was displayed when the Randox method was compared against other commercially available methods.
Liquid ready-to-use
–
The Randox 5th generation bile acids is available in a liquid ready-to-use format for convenience and ease-of-use.
Calibrator and controls available
–
Calibrator and controls are available offering a complete testing package.
Applications available
–
Applications available detailing instrument-specific settings for the convenient use of the Randox 5th generation bile acids assay on a variety of clinical chemistry analysers.
A 4th generation method for bile acids testing is also available which offers an excellent linearity up to 150µmol/l. Applications available detailing instrument-specific settings for the convenient use of the Randox 4th generation bile acids assay on a variety of clinical chemistry analysers.
Cat No | Size | ||||
---|---|---|---|---|---|
BI7982 | R1 6 x 50ml R2 6 x 18ml | Enquire | Kit Insert Request | MSDS | Buy Online |
BI3863 | R1 2 x 18ml R2 2 x 8ml | Enquire | Kit Insert Request | MSDS | Buy Online |
Instrument Specific Applications (ISA’s) are available for a wide range of biochemistry analysers. Contact us to enquire about your specific analyser.
Intrahepatic cholestasis of pregnancy (ICP) or obstetric cholestasis is a pregnancy-specific liver disorder. ICP, characterised by maternal pruritus in the absence of a rash and increased total bile acids (TBA) levels, is a severe form, yet reversible, cholestasis commonly occurring in the second and third trimester of pregnancy. Diagnostic and therapeutic guidelines are lacking for ICP which is of concern as ICP can have significant foetal risks 1, 2.
ICP restricts the flow of bile through the gallbladder causing bile acids to build-up in the liver 2. Due to the build-up, bile acids leak into the bloodstream where they are detected at concerning levels. It has been documented that TBA levels in ICP can reach as high as 100 times the upper limit of a normal pregnancy. Moreover, a doubling in maternal serum TBA levels, results in a 200% increased risk of stillbirth. Additionally, elevated serum bile acids can affect the foetal cardiovascular system causing issues such as cardiac rhythm disturbances 3.
Whilst other liver function tests exist, including: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (GGT) and bilirubin; TBA testing is thought to be the most beneficial method for the diagnosis and monitoring ICP. Moreover, TBA measurements are believed to be the most beneficial when tested in conjunction with standard liver tests, offering unrivalled sensitivity enabling the identification of early stage hepatic dysfunction 3.
The enzyme cycling method enables signal amplification through cycled regeneration reactions. In the presence of Thio-NAD, the enzyme 3-α hydroxysteroid dehydrogenase (3-α HSD) converts bile acids to 3-keto steroids and Thio-NADH (Fig. 1). The reaction is reversible and 3-α HSD can convert 3-keto steroids and Thio-NADH to bile acids and Thio-NAD. In the presence of excess NADH, the enzyme cycling occurs efficiently and the rate of formation of Thio-NADH is determined by measuring specific change of absorbance at 405nm 5.
Fig 1: Enzyme cycling assay principle 5
Want to know more?
Contact us or download the Total Bile Acids Whitepaper.
Related Products
Clinical Chemistry Calibrator
Clinical Chemistry Control
Clinical Chemistry EQA
Reagents Resource Hub
Apolipoprotein A-I
Key benefits of the Randox Apolipoprotein A-I reagent
Liquid ready-to-use reagents
Liquid format which is more convenient, and can also help reduce the risk of errors occurring
Excellent stability
The Randox Apolipoprotein A-I reagent is stable to expiry when stored at 2-8°C
Applications available
Applications available detailing instrument-specific settings for a variety of clinical chemistry analysers.
Ordering information
Cat No | Size | ||||
---|---|---|---|---|---|
LP3838 | R1 4 x 30ml (L) R2 4 x 12ml | Enquire | Kit Insert Request | MSDS | Buy Online |
(C) Indicates calibrator included in kit (L) Indicates liquid reagent |
Instrument Specific Applications (ISA’s) are available for a wide range of biochemistry analysers. Contact us to enquire about your specific analyser.
What is Apolipoprotein A-I assay used for?
The Apolipoproteins are the main form of protein found in High Density Lipoproteins (HDL). The main role of APO A-I is in the activation of Lecithin Cholesterol Acyl Transferase (LCAT) and removal of free cholesterol from extra hepatic tissues. APO A-I may therefore be described as non atherogenic, showing an inverse relationship to cardiovascular risk.
APO A-I may be measured in patients with a personal or family history of high concentrations of lipids and/or premature CHD. It may be requested to find out the cause of high lipid levels and/or a suspected disorder that is causing a deficiency in APO A-I. APO A-I can be used with APO B-100 to check your ratio of “good” to “bad” cholesterol
Publications
Related Products
Calibrator included in LP2116
Calibrator included in LP2116
Abbott Architect
We develop a range of applications for the Abbott Architect analyser so that laboratories worldwide can enjoy the benefits of freedom of choice from an independent manufacturer, Randox Laboratories. We have 88 reagents available for the Abbott Architect, and are always developing more. If you don’t see the application you are looking for, please contact us to request an application.
All kits are produced to international standard and have ISO 13485 accreditation.
Existing customers can access IFU’s through Powerline.
[table “419” not found /]
sTfR Assay
Reagent | Soluble Transferrin Receptor
Key benefits of the Randox sTfR assay
Excellent correlation
A correlation coefficient of r=0.977 was displayed when the Randox methodology was compared against other commercially available methods.
Latex Enhanced Immunoturbidimetric method
Facilitating testing on biochemistry analysers and eliminating the need for dedicated equipment
Excellent measuring range
The healthy range for sTfR is 0.65 – 1.88mg/L. The Randox sTfR assay can comfortably detect levels outside of the healthy range, measuring between 0.5 – 11.77 mg/L.
Liquid ready-to-use assay
The Randox sTfR assay is available in a liquid ready-to-use format for convenience and ease-of-use.
Stable to expiry date
The Randox sTfR assay is stable to expiry date when stored at +2 to +8°C
Applications are available
Applications are available detailing instrument-specific settings for the convenient use of the Randox soluble transferrin receptor assay on a wide range of clinical chemistry analysers.
Ordering information
Cat No | Size | ||||
---|---|---|---|---|---|
TF10159 | R1 1 x 9ml (L) R2 1 x 5.8ml | Enquire | Kit Insert Request | MSDS | Buy Online |
(L) Indicates liquid option |
The most common nutritional deficiency globally is iron deficiency (ID) with 15% to 20% of the global population affected by IDA 1. IDA has also been recognised as the most common form of anaemia in infants aged between 4 and 24 months of age, school-age children, female adolescents, pregnant women, and nurturing mothers. It has been recognised that young children including infants require high levels of iron during growth periods making them more susceptible to ID 2.
Soluble transferrin receptor levels have also been found to be a strong biomarker of erythropoietic and haemolysis drive compared to iron-restricted erythropoiesis in paediatric sickle cell disease 3.
Another study found that elevated levels of sTfR is linked with central obesity in men with hyperferritinemia 4.
sTfR has also “been included in multivariable blood testing models for the detection of performance enhancing erythropoietin misuse in sport” and has been recommended as a marker of ID in athletes 5.
A truncated extracellular form of the membrane transferrin receptor, soluble transferrin receptor (sTfR) is a marker of iron status and erythropoiesis. sTfR levels have been found to increase in iron-deficient erythropoiesis and iron deficiency anaemia (IDA). Some have reported that sTfR is useful in the differential diagnosis of IDA and anaemia of chronic disease or inflammation (ACD)1.
At present, ferritin remains the traditional iron deficiency marker with serum ferritin reflecting intracellular iron storage. Ferritin is an acute phase reactant, and so ferritin levels can be influenced by inflammatory conditions. In the presence of inflammation, ferritin levels may be represented as an elevated value leading to a false representation of iron stores in the body, resulting in a delayed diagnosis. For these reasons, sTfR should be tested when the reliability of a ferritin test is compromised.
There isn’t a single diagnostic test to diagnose anaemia. Currently the diagnosis comprises of two steps:
> Firstly confirming that the patient has anaemia which utilises the haemoglobin assay and red blood cell count.
> Secondly is the determination of the root cause of the anaemia which can be identified through testing sTfR and transferrin levels.
Randox offer a number of diagnostic reagents in addition to sTfR which can be used on a wide range of biochemistry analysers for the diagnosis of anaemia. The Randox assays have shown clinical utility in testing for anaemia. The Randox anaemia toolbox comprises of: iron, ferritin, transferrin, unsaturated iron binding capacity (UIBC), total iron binding capacity (TIBC) and the recent addition of sTfR.
There are many different types of anaemia and many triggers and conditions which contribute to the development of anaemia. For this reason, a single test cannot diagnose an individual with anaemia while also knowing what the root cause of it is. Additionally, patient symptoms can give an indication but a full range of diagnostic tests provide independent information to aid the definitive medical diagnosis and enable clinicians to provide effective treatment for patients.
Related products
sTfR Control
sTfR Calibrator
Resource Hub
References
[1] Freixenet, N. et al., 2009. Serum soluble transferrin receptor concentrations are increased in central obesity. Results from a screening programme for hereditary hemochromatosis in men with hyperferritinemia. 400(1-2).
[2] Lulla, R., Thompson, A. & Liem, R., 2010. Elevated soluble transferrin receptor levels reflect increased erythropoietic drive rather than iron deficiency in pediatric sickle cell disease.
[3] Monajemzadeh, S. M. & Zarkesh, M. R., 2009. Iron deficieny anemia in infants aged 12-15 months in Ahwaz, Iran. 52(2).
[4] Schumacher, Y., Schmid, A., König, D. & Berg, A., 2002. Effects of exercise on soluble transferrin receptor and other variables of the iron status.
[5] Yoon, S. H. et al., 2015. The usefulness of soluble transferrin receptor in the diagnosis and treatment of iron deficiency anemia in children.