Iron Deficiency Anaemia during Pregnancy
Iron Deficiency Anaemia during Pregnancy
On a global scale, 1.62 billion people are affected by anaemia which is equivalent to 24.8% of the population ₁. According to a review carried out by WHO of various national surveys, anaemia affects approximately 42% of pregnant women worldwide and it is also estimated that at least 50% of all anaemia cases are due to iron deficiency.
Anaemia caused by iron deficiency is usually expected during pregnancy. This is due to several reasons: the increased demand for iron by a pregnant woman’s body from increased total blood cell volume, requirements of the foetus and placenta as well as mass blood loss during labour₂. Although iron cost is unbalanced by the lack of loss of menstrual blood during pregnancy, the net cost is still high enough that iron recommendations are higher than in non-pregnant women. Also, iron is critical during pregnancy considering its involvement in foetal growth: 600-800mg of iron is required during pregnancy with around 300mg needed just for the foetus, a minimum of 25mg for the placenta and almost 500mg due to the increase in volume of red blood cells. ₃
Iron deficiency is the most common micronutrient deficiency in pregnant women leading to iron deficiency anaemia if left untreated. However, iron deficiency can be difficult to measure in some populations due to the lack of availability of field-specific biomarkers. For example, anaemia can affect up to 56% of pregnant women in developing countries, which suggests a high prevalence of iron deficiency anaemia: around 25%. In settings with endemic malaria, such as certain countries in Africa, the number of pregnant women with anaemia is much higher: around 65%.
There are various factors that may increase the risks of iron deficiency anaemia. For example, a diet influenced by religious beliefs can cause a lack of iron in the diet, such as vegetarianism which is common in countries such as India where religious beliefs dictate this. Iron levels can also be affected by consumption of nutrients which inhibit proper absorption of iron, such as calcium or ones that promote iron absorption, such as vitamin C. Other circumstantial risks include infections, multiple pregnancies and adolescent pregnancy while socioeconomic factors and access to healthcare mean some women won’t have access to anaemia control programs, iron supplements or even access to information about iron deficiency anaemia during pregnancy.
To prevent iron deficiency, international guidelines state that iron supplementation to manage iron deficiency is recommended during pregnancy. ₄ However, this is not always available, especially in developing countries.
Iron deficiency anaemia during pregnancy can cause several complications for the mother including:
- Increased fatigue
- Short-term memory loss
- Decreased attention span
- Increased pressure on the cardiovascular system due to insufficient haemoglobin and blood oxygen levels
- Lower resistance to infections
- Reduced tolerance to significant blood loss and surgical implications during labour.
As expected, neonates with mothers who suffered from iron deficiency anaemia during pregnancy will also be confronted with risks and, even if iron deficiency is only mild to moderate, can result in a premature birth, complications with foetal brain development, low birth weight and even foetal death. Additionally, it has been proven that cognitive and behavioural abnormalities can be seen in children for up to ten years after iron insufficiency in the womb.
Randox Soluble Transferrin Receptor (sTfR) Reagent
Randox Reagents offer a Soluble Transferrin Receptor assay to expand upon our current iron testing offering.
In iron deficiency anaemia, soluble transferrin receptor levels are significantly increased, however, remain normal in acute phase conditions including: chronic diseases and inflammation. As such, sTfR measurements are useful in the differential diagnosis of anaemia: anaemia of chronic disease or iron deficiency anaemia.
In iron deficiency anaemia, increased sTfR levels have also been observed in haemolytic anaemia, sickle cell anaemia and B12 deficiency.
The benefits of the Randox Soluble Transferrin Receptor (sTfR) Reagent include:
- Latex enhanced immunoturbidimetric method facilitating testing on biochemistry analysers and eliminating the need for dedicated equipment.
- Liquid ready-to-use reagents for convenience and ease-of-use
- Stable to expiry date when stored at +2 to +8 °C
- Excellent measuring range of 0.5 – 11.77mg/L, comfortably detecting levels outside of the normal health range of 0.65 – 1.88mg/L
- Excellent correlation coefficient of r=0.977 when compared against other commercially available methods
- Applications available detailing instrument-specific settings for a wide range of clinical chemistry analysers
Find out more at: https://www.randox.com/stfr/
References:
- de Benoist B et al., eds.Worldwide prevalence of anaemia 1993-2005. WHO Global Database on Anaemia Geneva, World Health Organization, 2008.
- Harvey et al, Assessment of Iron Deficiency and Anemia in Pregnant Women: An Observational French Study, Women’s Health, Vol 12 Issue 1, 2016
- Burke et al, Identification, Prevention and Treatment of Iron Deficiency during the First 1000 Days, Nutrients, Vol 6 Issue 10, 2014
- Guideline: Daily Iron and Folic Acid Supplementation in Pregnant Women. World Health Organization; Geneva, Switzerland: 2012